
Variationally Enhanced Sampling with
Permutationally Invariant Collective Variables

Dissertation
Zur Erlangung des Grades

„Doktor der Naturwissenschaften“
im Promotionasfach Chemie

am Fachbereich Chemie, Pharmazie,
Geographie und Geowissenschaften

der Johnanes Gutenberg-Universität Mainz

Bin Song
geb. in Shanxi, China

Mainz, 2022

1. Bericherstatter:
2. Bericherstatter:
Tag der mündlichen Prüfung:

A B S T R A C T

Molecular dynamics (MD) simulations have become an indispensable
tool in understanding the physical world at a resolution of molecular
details. Currently, MD simulations are still limited to the microsecond
timescale in most circumstances. When there is a high free energy
barrier between metastable states, sampling is easily trapped in a local
free energy minimum. A variety of enhanced sampling methods and
algorithms have been developed to overcome such issues. In this thesis,
we present our work on both developments of algorithms and methods.
In terms of algorithm development, we have created an interface
between PLUMED 2, a software package that has implemented some
of the most prominent enhanced sampling methods, and the MD
engine ESPResSo++. We used the combination of the two packages to
study the first-order phase transition of the 128 monomer single-chain
smooth square-well polymer. In terms of method development, based
on the variationally enhanced sampling method, we have created
the variationally enhanced sampling with permutationally invariant
collective variables method so that such local collective variables can
be used in biased simulations. We have demonstrated the effectiveness
of the new method in phase transition studies of seven Lennard-
Jones particles in two-dimensional space and crystallization of bulk
sodium. We have also explored crystallization of ice and urea from
melt with the new method and discussed the limitations of the current
implementation encountered in these works.

Z U S A M M E N FA S S U N G

Molekulardynamiksimulationen (MD) sind zu einem unverzichtbaren
Instrument für das Verständnis der physikalischen Welt auf molekula-
rer Ebene geworden. Derzeit sind MD-Simulationen in den meisten
Fällen noch auf den Mikrosekundenbereich beschränkt. Wenn eine ho-
he Freie-Energie-Barriere zwischen metastabilen Zuständen existiert,
ist das System oft in einem der lokalen Minima der freien Energie
gefangen. Es wurden verschiedene Enhanced-Sampling-Methoden
und Algorithmen entwickelt, um solche Schwierigkeiten zu über-
winden. In dieser Thesis präsentieren wir unsere Forschung welche
sowohl Algorithmus- als auch Methodenentwicklung umfasst. Bei der
Algorithmusentwicklug haben wir eine Schnittstelle zwischen PLU-
MED 2, einem Softwarepaket das einige der bekanntesten Enhanced-
Sampling-Methoden implementiert, und der MD-Engine ESPResSo++
geschaffen. Die Kombination der beiden Pakete wurde zur Unter-

iii

suchung des Phasenübergangs erster Ordnung des 128 monome-
ren, einkettigen, gleichmäßig Square-Well-Polymers genutzt. Auf der
Grundlage der Variationally-Enhanced-Sampling-Methode haben wir
Variationally-Enhanced-Sampling mit permutationsinvarianten kollek-
tiven Variablen entwickelt, so dass solche lokalen kollektiven Variablen
in Enhanced-Sampling-Simulationen verwendet werden können. Wir
haben die Wirksamkeit der neuen Methode in Phasenübergangsstudi-
en von sieben Lennard-Jones-Partikeln im zweidimensionalen Raum
und Kristallisation von Natrium gezeigt. Wir haben auch die Kris-
tallisation von Eis und Harnstoffs aus der Schmelze mit der neuen
Methode untersucht und die Grenzen der derzeitigen Implementie-
rung aufgezeigt.

A C K N O W L E D G M E N T S

v

C O N T E N T S

1 Introduction 1

1.1 the Advent of Computer Simulations 1

1.1.1 Monte Carlo 2

1.1.2 Molecular Dynamics 3

1.2 Statistical Thermodynamics 5

1.2.1 Thermodynamic Ensembles and Partition Func-
tions 5

1.2.2 Observables and Ensemble Averages 7

1.3 Force Fields 9

1.3.1 Force Fieds for Biomolecules 9

1.3.2 Smooth Square-Well Potential 11

1.3.3 the Embedded-Atom Method Potential 12

1.4 the Velocity-Verlet Integrator 12

1.5 Periodic Boundary Conditions 14

1.6 Thermostats and Barostats 15

1.6.1 the Stochastic Rescaling Thermostat 15

1.6.2 the Parrinello-Rahman Barostat 15

2 Enhanced Sampling Methods 21

2.1 Umbrella Sampling 24

2.2 Metadynamics and Well-Tempered Metadynamics 25

2.2.1 the Conventional Metadynamics 26

2.2.2 Well-tempered Metadynamics 27

2.3 Reweighting of Well-Tempered Metadynamics Simula-
tions 29

2.3.1 Residual Bias Reweighting 30

2.3.2 Last Bias Reweighting 30

2.4 Variationally Enhanced Sampling 31

2.4.1 Variational Optimization Process 31

2.4.2 Algorithmic Implementation of VES 33

3 the ExtPlumed Extension and the Single-Chain Smooth Square-
Well Polymer 37

3.1 ESPResSo++ and ExtPlumed Extension 37

3.2 the Single-Chain Smooth Square-Well Polymer 39

3.2.1 the Square-Well Potential and the Smooth Square-
Well Potential 39

3.2.2 Simulations and Methods 43

3.2.3 Methods of Analysis 45

3.2.4 Results and Discussions 47

3.2.5 Conclusions 57

4 Variationally Enhanced Sampling with Permutationally In-
variant Collective Variables 61

4.1 a Short Review of VES 64

vii

viii contents

4.2 the VES-PICV Method 65

4.3 Simulations and Methods 66

4.3.1 Seven Lennard-Jones Particles in Two-Dimensional
Space 66

4.3.2 Bulk Sodium 68

4.4 Results 71

4.4.1 Seven Lennard-Jones Particles 71

4.4.2 Bulk Sodium 75

4.5 Discussions 80

5 Crystallization of Ice and Urea 83

5.1 Ice 83

5.1.1 Details of Simulations 84

5.1.2 the Kernel CV 85

5.1.3 Parameters in VES-PICV 87

5.1.4 Results 87

5.2 Urea 89

5.2.1 Simulation details 89

5.2.2 the SMAC Collective Variable 90

5.2.3 Results 92

5.3 Discussions 92

6 Conclusions 97

Appendix
a Source Code of the ExtPlumed Extension 101

b Source Code for the Smooth Square-Well Potential 109

c Supporting Information of Single-Chain Smooth Square-Well
Polymer 117

d Supporting Information for Chapter 4 123

d.1 Seven Lennard-Jones Particles 123

d.2 Bulk Sodium 125

e Input Files for PLUMED in Simulations of Ice and Urea 129

e.1 Ice Ih 129

e.2 Urea 131

L I S T O F F I G U R E S

Figure 1.1 An diagram illustrating the timescale and length
scale of computer simulations. 1

Figure 1.2 A schematic representation of a Monte Carlo
simulation. 2

Figure 1.3 Four types of bonded interactions. 10

Figure 1.4 The shape of the 12-6 style Lennard-Jones po-
tential. 11

Figure 1.5 The embedded-atom method potential of sodium
in FS scheme. 12

Figure 1.6 The periodic boundary conditions. 14

Figure 1.7 An example of a triclinic simulation box. 16

Figure 2.1 A schematic illustration of shooting moves of
transition path sampling. 22

Figure 2.2 A schematic illustration of forward flux sam-
pling (a) and milestoning (b). 22

Figure 2.3 An illustration of replica-exchange molecular
dynamics simulations with four walkers. 23

Figure 2.4 A schematic illustration of the growth of the
time dependent bias potential V(s, t) with the
time in a metadynamics simulation. 28

Figure 2.5 The relationship between the well-tempered
distribution and the unbiased distribution. 29

Figure 2.6 An illustration of the convergence of variational
parameters α and the average variational pa-
rameters ᾱ. 33

Figure 2.7 An illustration of how PLUMED 2 and a MD
engine work together in a simulation. 34

Figure 3.1 An illustration of the binding of Python and
C++ in ESPResSo++. 38

Figure 3.2 The implementation of the ExtPlumed exten-
sion in ESPResSo++. 40

Figure 3.3 Conformations of the random coil state (a) and
the crystalline state (b) of the single-chain square-
well polymer. 41

Figure 3.4 The square-well potential, the smooth square-
well potential and the harmonic bond poten-
tial. 42

Figure 3.5 An example of the switching function σ(rij). 44

Figure 3.6 The time series of the biased CV s, potential
energy U, and Steinhardt order parameter Q6

at T = 0.438. 48

ix

x list of figures

Figure 3.7 The time series of the biased CV s, potential
energy U, and Steinhardt order parameter Q6

of the biased simulations at T = 0.418 and T =
0.458. 49

Figure 3.8 The free energy profiles F(s) of the SCP esti-
mated with the bias potential. 50

Figure 3.9 Reweighted free energy surface with respect
to the linear reaction coordinate s with the
last bias reweighting method and residual bias
reweighting method. 50

Figure 3.10 The standard errors of the reweighted histograms
and free energy profiles of the linear reaction
coordinate s at T = 0.438. 51

Figure 3.11 The reweighted 2D FES F(U,Q6) for the single-
chain smooth square-well polymer at T = 0.438 52

Figure 3.12 F(U,Q6) at T=0.418 and T=0.458, estimated by
last bias reweighting. 53

Figure 3.13 Free energy profile F(Q6), the potential energy
profile U(Q6), and entropy −TS(Q6) with re-
spect to Q6 at T = 0.438. 54

Figure 3.14 Extrapolation of free energy profiles to T =
0.418 or 0.438 from the potential energy profile
U and entropy S obtained at T = 0.438. 55

Figure 3.15 Free energy of crystallization ∆Gcry at T =
0.418,0.438 and 0.458. 56

Figure 3.16 The coexistence temperature Tco of the single-
chain smooth square-well polymer estimated
using free energy of crystallization. 57

Figure 4.1 The molecular structure of alanine dipeptide
and the dihedral angles. 62

Figure 4.2 A schematic illustration of permutationally in-
variant collective variables. 63

Figure 4.3 The liquid phase and crystalline phase of bulk
sodium. 68

Figure 4.4 The reference template of sodium crystal and
the histogram of the kernel CV k̃χ0

. 70

Figure 4.5 The most stable configuration (a) and the three
metastable configurations (b, c, d) of seven
Lennard-Jones particles in two dimensions. 72

Figure 4.6 The 2D free energy surface F(µ22,µ33) of seven
Lennard-Jones particles. 73

Figure 4.7 1D reweighted free energy profiles with respect
to µ22 and µ33. 74

Figure 4.8 The sampled distribution of coordination num-
bers of the seven particles and the unit bias
potential. 74

Figure 4.9 The times series of CV ns and Q6 of the brute
force simulations at T = 380 K. 75

Figure 4.10 The times series of k̃χ0
(χ), ns and Q6 of the

first walker of the VES-PICV simulations of
bulk sodium. 77

Figure 4.11 The sampled distributions of kernel CV k̃χ0
(χ)

on an arbitrarily chosen sodium from each of
the eight walkers. 78

Figure 4.12 The unit bias potential v(k̃χ0
;α) at different

time of VES-PICV simulations. 78

Figure 4.13 The reweighted free energy profiles F(Q6) of
the eight walkers and the mean free energy
profile. 79

Figure 5.1 A schematic illustration of the TIP4P/ice water
model. 84

Figure 5.2 The histograms of kX(χ) in liquid water and
ice Ih, and the reference template 86

Figure 5.3 The time series of kX(χ), Q6 and nice in the
single-walker and multiple-walker simulations
of ice. 88

Figure 5.4 The chemical structure of a urea molecule. 89

Figure 5.5 Vectors defined on a urea molecule used to
computed the SMAC CV. 91

Figure 5.6 Configurations of urea melt and the form I
crystal, and the histogram of Γi in the two
phases. 93

Figure D.1 The time series of the number of solid atoms
ns and Q6 of walkers 2-8. 127

L I S T O F TA B L E S

Table 1.1 Parameters used in the smooth square-well po-
tential. 11

Table 3.1 The averages and standard errors of free energy
of crystallization ∆Gcry in unit of ε. 57

Table 5.1 Parameters used in the computation of SMAC
(Γi). 91

xi

L I S T I N G S

Listing A.1 ExePlumed.py 101

Listing A.2 ExtPlumed.hpp 103

Listing A.3 ExtPlumed.cpp 104

Listing B.1 SmoothSquareWell.py 109

Listing B.2 SmoothSquareWell.hpp 112

Listing B.3 SmoothSquareWell.cpp 114

Listing C.1 Python script used to set up the ESPResSo++
simulation of SCP 117

Listing C.2 plumed.dat file for well-tempered metadynam-
ics simulation of SCP 120

Listing C.3 R script for the standard error of Tco 120

Listing D.1 plumed.dat file for the VES-PICV simulation of
7 Lennard-Jones Particles 123

Listing D.2 plumed.dat file for the VES-PICV simulation of
bulk sodium 125

Listing E.1 plumed.dat file for the VES-PICV simulations
of ice Ih 129

Listing E.2 plumed.dat file for the VES-PICV simulations
of urea 131

A C R O N Y M S

CV collective variable

EAM embedded-atom method

FES free energy surface

FS Finnis-Sinclair

PICV permutationally invariant collective variable

MD molecular dynamics

SCP single-chain smooth square-well polymer

PBC periodic boundary condition

US umbrella sampling

VES variationally enhanced sampling

WTMetaD well-tempered metadynamics

WHAM weighted histogram analysis method

1 I N T R O D U C T I O N

1.1 the advent of computer simulations

The advent of modern computers towards end of the Second World
War has paved the way for high performance computing as a new tool
in physical science research in addition to the traditional theoretical
and experimental approaches. By expression of the fundamental laws
of physics into computational instructions, chemists and physicists
alike are able to conduct their experiments in a virtual environment
through computer modeling and observe collective behaviors of atoms,
ions, molecules or a combination of these species at a particular state
of their choosing. To address different scientific questions, various
techniques have been developed for different timescales and length-
scales as illustrated in Figure 1.1. In this thesis we focus on techniques
in empirical MD regime that can be used to investigate physical
phenomena such as conformational changes of biomacromolecules,
ice crystallization, growth of clathrate hydrates, ligand binding and so
forth.

ns 10ns 0.1µs µs 10µs 0.1ms ms

pm

Å

nm

µm

mm

m

Ab initio
MD

empirical
MD

kinetic
Monte Carlo

continuum
mechanics

time

di
m

en
si

on

Figure 1.1: The timescale and length-scale of computer simulations of differ-
ent computer modeling techniques are illustrated by the block in which they
reside. The boundary shows the general use cases of a technique of a block
rather than a strict limitation of a technique.

With easy controls of the conditions afforded by computer simu-
lations, researchers gain unrivaled resolution of these processes. We
can not only glean a peek into mechanisms on a molecular level from

1

2 introduction

trajectories of simulations, but also obtain free energy landscapes and
kinetics by employing theories of statistical mechanics and chemical
kinetics. The term in silico1 quite aptly reflects the important role that
computation increasingly plays.

1.1.1 Monte Carlo

Figure 1.2: An illustration of a
simple Monte Carlo simulation,
where each solid circle represents
a particle in a two-dimensional
box and the red circle is randomly
selected to move to a new location
marked by the dotted red circle.
Such a move is either accepted or
rejected with a probability per pre-
scription of Equation 1.1 or Equa-
tion 1.2.

Metropolis et al. performed the first com-
puter simulation of a liquid in 1953 on
Los Alamos National Laboratory’s com-
puter maniac using the algorithm that
came to be known as Metropolis-Monte-
Carlo method2. We give a simple ex-
ample of a Monte Carlo simulation in
Figure 1.2. In this example the N parti-
cles in a simulation box interact with
each other according to certain force
fields, of which examples are given in
Section 1.3. The potential energy Uo

of the system of the original configura-
tion ro = {r1(t), . . . ,rN(t)} can be com-
puted based on the chosen force fields
and associated parameters. A random
particle is then selected, and a move of
its position is proposed to create a new
configuration rn. The potential energy Un of the new configuration is
then computed so that the change of the potential energy ∆Uo→n of
the proposed move is known. The proposed move is either accepted
or rejected by according to the criteria given in Equation 1.1 and
Equation 1.2. The configuration space at time t is r(t) = ro. The new
configuration is accepted with probability of 1 when the new potential
energy is reduced or stay unchanged, i. e.,

r(t+ 1) = rn when ∆Uo→n ≤ 0. (1.1)

Otherwise, a random number x in the range from 0 to 1 needs to
be drawn. If the exp(−β∆Uo→n) ≥ x, the new state rn is accepted
with the probability of exp(−β∆Uo→n). Otherwise, the old state ro is
retained with the probability of exp(−β∆Uo→n). This process can be
summarized in Equation 1.2:

r(t+ 1) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

rn, exp(−β∆Uo→n) ≥ x;

ro, exp(−β∆Uo→n) < x.
(1.2)

By repeating aforementioned process we can obtain a trajectory of the
configurations that have been visited by a Monte Carlo simulation.
These configurations are sampled under the Boltzmann distribution,

1.1 the advent of computer simulations 3

which is the probability distribution of the microscopic states, and
to which we give more detailed introductions in Section 1.2.1. The
Monte-Carlo-Metropolis algorithm takes samples under the Boltzmann
distribution because it follows the requirement of “detailed balance”:

p(ri)Tij = p(rj)Tji. (1.3)

In Equation 1.3 p(ri) and p(rj) are the probabilities of states i and j
according to the Boltzmann distribution. Tij is the transition probabil-
ity from state i to j, and conversely Tji is the probability of the reverse
transition.

One can envision that an observable value A is defined as a function
of the configuration space r, i. e., A(r) ≡ f(r). A(r), therefore, can
be computed for the entire trajectory, and its probability distribution
follows the Boltzmann distribution. The trajectory average of A(r)
corresponds to the experimental value of A.

The design of the moving step is critical for the success of a Monte
Carlo simulation. When the moving step (or other types of changes
in the configuration) is too little, the acceptance rate will be high.
However, the generated trajectory is plagued by correlations between
successive frames. In other words, the generated configurations are
too similar between each other, and the configuration space is not
explored sufficiently. On the other hand, if the moving step is too
large, the acceptance rate will be reduced, and the simulation suffers
from a grave slowdown as a result. A practitioner of Monte Carlo
simulations must find the balance between the acceptance rate and
the size of proposed moves.

There are two benefits to Monte Carlo methods. First, there is no
need to compute the forces of interactions which saves considerable
computation time. Secondly, the Boltzmann distribution can be sam-
pled comparatively easily without the need of specialized algorithms,
when the temperature is kept constant.

Monte Carlo methods have several drawbacks too. For example, in
Monte Carlo simulations no real dynamics are involved in the process,
which is necessary to study diffusion behaviors. Neither are Monte
Carlo simulations suitable for studying mechanical properties of a
system, where forces of interactions are essential but absent in Monte
Carlo simulations. In the next section we introduce another simulation
method that is free of these shortcomings and is the main simulation
method used in this thesis.

1.1.2 Molecular Dynamics

Four years after the Metropolis-Monte-Carlo method was introduced,
molecular dynamics (MD) was developed to study a system of hard
spheres by Alder & Wainwright.3,4 In a MD simulation a box of N
particles are initialized with both their positions r = {r1(t), . . . ,rN(t)}

4 introduction

and their velocities or momenta p = {p1(t), . . . ,pN(t)}. The particles
in the simulation box move according to classical mechanics in short
time steps, which are determined by the fastest vibrational motions in
a molecule. They are usually in the femtosecond scale for atomistic
simulations. The equations of motions are integrated through short
time steps ∆t to update the positions and momenta of the system, as
shown in Equation 1.4:

r(t)→ r(t+∆t),
p(t)→ p(t+∆t).

(1.4)

Unlike with Monte Carlo simulations, with MD simulations we obtain
a trajectory of configurations r(t) and momenta p(t), which together
form the phase space (r,p). In MD simulations both the potential
energy U(ri) and the force Fi(ri) = −∇U(ri) are computed at each
time step to update the positions and velocities of all the particles
in the system step by step. After the completion of a MD simulation
the trajectory that we obtain is a time series of snapshots of the
configuration space, from which we can also compute a time series of
the observable A(r).

It is far more complex to achieve correctness and efficiency in a
MD simulation than what has been described above. For example,
the non-bonded interactions including Lennard-Jones interactions
usually are truncated, i. e., a pair of particles interact only when
they are separated within a cutoff distance. The consequence of the
truncation of force fields is that all pairwise interactions do not need
to be computed and significant savings of computation power. In
a MD simulation the number of particles typically range from a few
hundred to a few million atoms, which is nowhere near to the size
of a bulk system. Hence, periodic boundary conditions are deployed
to emulate a bulk environment. The algorithm to propagate the
dynamics of a MD simulation is called the integrator algorithm. A
requirement for an integrator is that it conserves the total energy
of the system. An algorithm that keeps the temperature constant is
called a thermostat, and analogously a barostat keeps the pressure
constant in a MD simulation. Before we dive into the topics of these
algorithms of molecular dynamics, we first take a detour into statistical
thermodynamics in Section 1.2. After that we visit the topic of force
fields in Section 1.3, and then we move onto topics of the integrator,
periodic boundary conditions, and finally the thermostat and the
barostat in later sections.

Before we get into statistical thermodynamics, we briefly mention a
few open source software packages that are most relevant to this thesis.
They are LAMMPS5, GROMACS6–13, ESPResSo++14,15. LAMMPS is
written mostly in high performance C++, which is developed and
maintained by Sandia National Laboratories. In addition to the com-
mon force fields, it has also implemented three-body interactions

1.2 statistical thermodynamics 5

such as the Stillinger-Weber potential and embedded atom models, so
that LAMMPS is popular in material science research. GROMACS is
another highly performant MD package, which has implemented atom-
istic force fields AMBER, CHARMM, and the popular coarse-grained
MARTINI16 force fields. It is extensively used in simulations of bio-
molecules. ESPResSo++ is developed and maintained by the Theory
Group of the Max Planck Institute for Polymer Research, Mainz. It
has a flexible Python interface that exposes positions, forces and other
thermodynamics parameters to users for them to easily monitor or
manipulate the simulations. The performance sensitive algorithms in
ESPResSo++ are still implemented with C++. Besides these MD en-
gines another important software library is PLUMED17–19, which can
not only be used for enhanced sampling with MD engines in the real
time of the simulations, but for the analysis of simulation trajectories
in postprocessing as well.

1.2 statistical thermodynamics

MD simulations can be easily parallelized to either achieve a massive
simulation with millions of atoms in size or to create a large amount
of trajectories of smaller sizes simultaneously. The longest simulations
have reached millisecond in time.20 As a result, a large amount of data
can be generated from the simulations. We rely on the principles of
statistical thermodynamics to extract relevant information from the
large amount of trajectories generated from MD simulations. Fortu-
nately the development of statistical thermodynamics predates the
development of computer simulations. Statistical thermodynamics
connects the laws of classical thermodynamics to its microscopic ori-
gins, and macroscopic observables to the probability distributions of
microscopic states.

1.2.1 Thermodynamic Ensembles and Partition Functions

To build a connection between the microscopic states and the macro-
scopic states, we first define the term “ensemble”. An ensemble is
an imaginary collection of atoms and molecules with a certain set of
constraints of the thermodynamic parameters applied to the collec-
tion. The constrained thermodynamic parameters could include the
number of particles N, the volume V , the temperature T , the pressure
P, the chemical potential µ, the internal energy E and so on. The
most common ensembles include microcanonical ensemble (or the
NVE ensemble), the canonical ensemble (or the NVT ensemble), the
isobaric-isothermal ensemble (or the NPT ensemble), and the grand
canonical ensemble (or the µVT ensemble). The letters in the paren-
theses indicate the constrained thermodynamic parameters in each

6 introduction

ensemble. Once the set of the constrained thermodynamic parameters
and their values are decided, a hypersurface of the microscopic states
that are permitted in the phase space by the constrained parameters is
then determined for the ensemble. Moreover, the probability distribu-
tion of the permitted microscopic states on the hypersurface is also
determined. The Boltzmann distribution states that the probability
density of a microscopic state p is related to the internal energy E and
temperature T as in that p ∝ exp(− E

kBT
). The internal energy of a

system or the Hamiltonian H in Hamiltonian dynamics is expressed
as the sum of the kinetic energy K and the potential energy U:

H(r1, . . . ,rN,p1, . . . ,pN) =
N

∑
i=1

p2
i

2mi
+U(r1, . . . ,rN)

= K+U
= E.

(1.5)

Therefore the Boltzmann distribution can also be written as p ∝
exp[−H(r,p)

kBT
].

The microcanonical ensemble (NVE) is conceptually the simplest
ensemble, with the number of particles N, the volume V and the inter-
nal energy E kept constant. According to the Boltzmann distribution,
each state is equally probable as all microscopic states have the same
internal energy, or their internal energy is within a very narrow range
of each other in practice.21 The total number of microscopic states of
an NVE ensemble can be computed with a Kronecker delta function:

QNVE = ∑
(r,p)

δ[H(r,p)−E]. (1.6)

QNVE is called the partition function of a microcanonical ensemble.
The entropy S, which describes the order or disorder of the system, of
a microcanonical ensemble thus according to Boltzmann is

S = −kB lnQNVE. (1.7)

A more relevant ensemble is the canonical ensemble (NVT), in which
the following thermodynamic parameters, the number of particles N,
the volume V and the temperature T are kept constant. The Hamil-
tonian H is no longer a constant. The canonical partition function is

QNVT = ∑
(r,p)

exp[−H(r,p)
kBT

]. (1.8)

The probability of a microscopic state (r,p) can be computed with the
partition function according to the Boltzmann distribution:

p(r,p) =
exp (−H(r,p)

kBT
)

QNVT
. (1.9)

1.2 statistical thermodynamics 7

The macroscopic energy E is the ensemble average of the Hamiltonian
(⟨H⟩):

E =
∫ H exp (− H

kBT
)

QNVT

= −(∂
∂β

lnQNVT)
N,V

,

(1.10)

in which the inverse temperature β = (kBT)−1. The detailed deriva-
tions of Equation 1.10 can be found in Tuckerman [22, section 4.3].
Again without going into detailed derivations, the Helmholtz free
energy A, not to be confused with an observable A, and the entropy
S, the pressure P can be computed using the following equations:

A = −kBT lnQNVT , (1.11)

S = kB lnQNVT + kBT (
∂ lnQNVT

∂T
)
N,V

, (1.12)

P = kBT (
∂ lnQNVT

∂V
)
N,T

. (1.13)

Another common ensemble is the isobaric-isothermal ensemble
(NPT), where the pressure P is also kept constant. The probability dis-
tribution is now proportional to exp(−H+PV

kBT
). The partition function

of the NPT ensemble is

QNPT =
1

V0
∫
∞

0
dV e−βPVQNVT . (1.14)

The Gibbs free energy G, and average volume ⟨V⟩, enthalpy H, which
should not be confused with the Hamiltonian H, are:

G = −kBT lnQNPT , (1.15)

⟨V⟩ = −kBT (
∂ lnQNVT

∂P
)
N,T

, (1.16)

H = ⟨H⟩+P⟨V⟩. (1.17)

The relationships of macroscopic thermodynamic parameters and
the partition functions for other ensembles can be found in Tuckerman
[22], McQuarrie [23] and Allen & Tildesley [24]. These relationships
demonstrate the microscopic origins of macroscopic behaviors. How-
ever, to compute the partition functions analytically is impractical but
for the simplest systems. Sampling through computer simulations
has become indispensable in finding numerical solutions to these
equations.

1.2.2 Observables and Ensemble Averages

An Observable A, strictly speaking, is a function of the microscopic
state or the phase space (r,p) of the system. The average value of A,

8 introduction

which corresponds to the experimental value of A, can be computed
as the ensemble average of A. In the case of a canonical ensemble:

⟨A⟩ =
∬r,p drdpA(r,p) exp (−H(r,p)

kBT
)

QNVT
(1.18)

More often than not, though, A is defined as a function only of
the configuration space r. The ensemble average ⟨A⟩ of a canonical
ensemble, for example, can be computed with the configurational
integral Z instead of the full partition function QNVT . The configura-
tional integral Z, also called the configurational partition function, is
computed according to

Z = ∫ dr exp(−U(r)
kBT

) . (1.19)

Now the ensemble average of observable A is

⟨A⟩ =
∫ drA(r) exp (−U(r)

kBT
)

Z
= ∫ drA(r)p(r), (1.20)

in which p(r) = e
−U(r)

kBT

Z
is the Boltzmann distribution of the configura-

tion r.
In the case of Monte Carlo simulations, the Boltzmann distribution

is directly sampled by the simulations due to detailed balance, and
the ensemble average of an observable is the probability-weighted
average of the observable from the simulations. In the case of MD

simulations, as long as ergodicity is upheld in the simulations, in
other words, a possible microscopic state can be visited given enough
time in the simulation regardless of the initial state of a simulation,
an ensemble average can be computed as the time average in an
MD simulation provided enough sampling. However, due to the
limitation of the timescale of MD simulations, the full phase space can
not be exhaustively sampled. This situation is referred to as “quasi-
nonergodicity”.25 In Chapter 2 we will introduce enhanced sampling
methods that tackle this issue.

The difference in the Helmholtz free energy A (or the Gibbs free
energy G) between two thermodynamic states is the reversible work
done to or by the system when it transitions between the two states
reversibly. However, we are often more interested in the free energy
landscape or free energy surface (FES) of a thermodynamic state rather
than the overall free energy in a computer simulation.

To characterize a free energy surface, we first define the term
collective variable (CV). A collective variable is a smooth differen-
tiable function of the coordinates or the configuration space, whose
derivative with respect to the coordinates is also smooth. Throughout

1.3 force fields 9

this thesis, we use the small letter s for a single CV and the bold small
s for multiple CVs. In short,

f ∈ C1(r, s). (1.21)

A CV must be able to distinguish different metastable states for it to
be useful in describing the free energy landscape of a thermodynamic
state. The free energy surface F(s) is a function of the CVs, and it is
related to the probability distribution of s, p(s) by

F(s) = − 1
β

logp(s). (1.22)

The probability distribution p(s) is related to p(r) by

p(s) = ∫ dr δ[s− s(r)]p(r), (1.23)

where the delta function δ[s− s(r)] = 0, when s(r) = s. Otherwise, it
is equal to 0. Similarly with multiple CVs, the probability density p(s)
is

p(s) = ∫ dr δ[s− s(r)]p(r). (1.24)

1.3 force fields

Force fields used in MD simulations should accurately represent the
potential energy surface and usually do so with pairwise additive
functions. A force field defines both the function form and related
parameters. The functions of the force fields must be differentiable
and smooth so that the forces acting on the atoms are continuous and
smooth. For example, in Section 1.3.2 a smooth square-well potential
is developed for MD simulations.

1.3.1 Force Fieds for Biomolecules

The interactions of molecular systems, which are mainly bonded inter-
actions and long-ranged nonbonded interactions in MD simulations,
are modeled by some of most commonly used force fields. In atomistic
simulations of biomolecules, the force fields typically are comprised
of the following terms:

U = ∑
bonds

kb(b−b0)2 + ∑
angles

kθ(θ− θ0)2

+ ∑
dihedrals

kϕ[1+ cos(nϕ− δ)]+ ∑
impropers

kω(ω−ω0)2

+ ∑
nonbonded

⎛
⎝
4ε

⎡⎢⎢⎢⎢⎣
(σ
rij
)
12

− (σ
rij
)
6⎤⎥⎥⎥⎥⎦
+ qiqj
εrij

⎞
⎠

,

(1.25)

10 introduction

(a) Bond (b) Angle

(c) Dihedral (d) Improper

Figure 1.3: Four types of bonded interactions.

in which the bonded interactions include the two types of vibrations
— bonds and angles, and the two types of torsions — dihedral angles
and improper angles. In Equation 1.25, three of the four bonded
interactions are modeled by a harmonic potential. And the dihedral
angle is modeled by the CHARMM style dihedral potential. Several
other types of potentials for bonded interactions are available for
MD practitioners as well. The four types of bonded interactions are
illustrated in Figure 1.3. The nonbonded interactions include the van
der Waals interaction, which is modeled by the 12-6 style Lennard-
Jones potential here, and the electrostatic coulombic interaction. The
Lennard-Jones potential is plotted in Figure 1.4.

The costliest computations in MD simulations are the computations
of nonbonded interactions due to their long-ranged nature. Both
Lennard-Jones interactions and electrostatic interactions can be ex-
pressed as power series of the separation r−1 between two interacting
atoms, and they have a long tail before approaching zero.26 There-
fore, both Lennard-Jones interactions and electrostatic interactions are
truncated in practice, i. e., beyond a cutoff distance the Lennard-Jones
interaction between two atoms is either left not computed or shifted to
zero. Electrostatic interactions beyond the cutoff can be treated with
particle mesh approaches or Ewald summation.27

1.3 force fields 11

0.0 0.5 1.0 1.5 2.0 2.5
r/σ

−1

0

1

2

U
(r
)/
ε

σ

−ε

Figure 1.4: The shape of the 12-6 style Lennard-Jones potential.

1.3.2 Smooth Square-Well Potential

The smooth square-well potential is a specialty potential designed by
Leitold & Dellago to represent the square-well interaction between
nonbonded pairs of a square-well polymer for MD simulations.28 In
Section 3.2 we will have more detailed discussions of the phase behav-
iors of such a polymer. The function form of the smooth square-well
potential is

U(r) = ε
2
{exp [−(r−σ)

a
]+ tanh [r− λσ

a
]− 1} , (1.26)

in which r is the separation between a pair of nonbonded subunits,
and ε controls the depth of the well, and σ and λ control the width of
the well, and a is related to the steepness of the repulsive part of the
potential. The smooth square-well potential with the parameters listed
in Table 1.1 is shown in the figure below. The smooth square-well
potential in orange is juxtaposed to the square-well potential in gray,
illustrating their resemblance.

ε σ λ a

1 1 1.05 0.002

Table 1.1: Param-
eters used in the
smooth square-
well potential.

1 1.02 1.04 1.06 1.08

−1

0

1

2

3

r/σ

U
(r
)/
ε

Smooth Square-Well
Square-Well

The smooth square-well potential and the square-well potential.

12 introduction

1.3.3 the Embedded-Atom Method Potential

The embedded-atom method (EAM) potentials are used in MD simu-
lations to model bulk metal alloys. Wilson et al. developed an EAM

potential based on Finnis-Sinclair (FS) scheme for bulk sodium to study
the solid-liquid interface free energy,29 which we use to study the free
energy of crystallization of bulk sodium. The function form of the
EAMs potential of Finnis-Sinclair scheme is shown here:

Ei = Fα
⎛
⎝∑i≠j

ραβ(rij)
⎞
⎠
+ 1
2
∑
i≠j
ϕαβ(rij), (1.27)

where rij is the distance between two atoms i and j, and ϕαβ(rij) is a
two-body potential describing the repulsive interaction between two
atoms. Fα is the required energy to embed an atom i in the electron
cloud at its current location. The electron density of the electron cloud
is described by ραβ, which has contributions from all atoms within
a cutoff distance of atom i but the atom i itself. Furthermore, the
contributions are dependent on the species of both atom i and j in
the FS scheme. The values for the parameters in Equation 1.27 are
listed in a tabularized form for MD engines to look up the during
the simulations. An abridged table of Wilson’s sodium potential29 is
shown in Figure 1.5, where the first five lines and last two lines are
shown. When the distance rij, or the electron density ραβ fall between
values in the table, the cubic spline interpolation is used to compute
the values of repulsions ϕαβ(rij) and embedding energy Fα.

1 Na
10000 1.00000000000000E-0002 10000 9.20000000000000E-0004 9.20000000000000E+0000
11 2.29897700000000E+0001 4.22786798098572E+0000 bcc
0 -1.00000000000000E-0001 -1.41421356237310E-0001 -1.73205080756888E-0001 -2.00000000000000E-0001
-2.23606797749979E-0001 -2.44948974278318E-0001 -2.64575131106459E-0001 -2.82842712474619E-0001 -3.00000000000000E-0001

⋮ ⋮ ⋮

⋮ ⋮ ⋮

4.25498791185477E-0010 2.79906382168121E-0010 1.75204912166188E-0010 1.02972484952037E-0010 5.57283103367888E-0011
2.69458489853916E-0011 1.10660324784449E-0011 3.51055884905364E-0012 6.95263818452957E-0013 4.35679574858516E-0014

Figure 1.5: Embedded-atom method potential of sodium in FS scheme. The first line
lists the number of elements and their symbols. The second line lists number of ραβ

values, dραβ, number of rij, drij, and the cutoff distance. The third line includes atomic
number, mass, lattice constant, and lattice type. The rest of file are lines of five values in
non-delineated blocks of embedding energy Fα corresponding to different electron density,
electron density ρα corresponding to the distance rij, and finally the pairwise repulsions
to distance.

1.4 the velocity-verlet integrator

In MD simulations all particles move in short time steps (∆t) according
to the Newton’s equations of motion. An ideal integrator would be
both speedy and accurate, however, compromises often have to be

1.4 the velocity-verlet integrator 13

made between the two requirements. To obtain a scheme to integrate
Newton’s equations of motion, we start with a Taylor expansion of the
positions of a particle i about time t,

ri(t+∆t) = ri(t)+ vi(t)∆t+
Fi(t)
2mi

∆t2 + ∆t
3

3!
...
r +O(∆t4). (1.28)

With a higher order of Taylor expansion the integrator is more accurate,
but the computation becomes more complex with higher orders of
derivatives, which also slows down the computation and requires
higher usage of the memory.30

It has been found that the second order of the Taylor expansion
in Equation 1.28 is sufficient to achieve the conservation of energy
and linear momentum. we rewrite it up to the second order Taylor
expansion and drop the index i for the benefit of conciseness as:

r(t+∆t) = r(t)+ v(t)∆t+ F(t)
2m

∆t2. (1.29)

Now with Equation 1.29 we can already propagate the positions r

of the particles, and we just need a way to propagate the velocities
v. It should be noted that the Taylor expansion is reversible in time,
therefore r(t) can be rewritten as

r(t) = r([t+∆t]−∆t)

= r(t+∆t)+ v(t+∆t)(−∆t)+ F(t+∆t)
2m

∆t2.
(1.30)

Replacing the r(t+∆t) in Equation 1.30 with Equation 1.29 and after
some rearrangements, we can update the velocities v through:

v(t+∆t) = v(t)+∆t(F(t)+ F(t+∆t)
2m

). (1.31)

Even though we can use Equation 1.31 directly to update the velocities,
it means that we have to keep two copies of the forces in memory, at
time t and t+∆t, respectively. Instead we first define v(t+ 1

2
∆t)

v(t+ 1
2
∆t) ≡ v(t)+ F(t)

2m
∆t, (1.32)

and plug it into Equation 1.31 and Equation 1.29, and we obtain
the most common form of the Verlet integrator — the velocity-Verlet
integrator31 as follows,

v(t+ 1
2
∆t) = v(t)+∆tF(t)

2m
, (1.33)

r(t+∆t) = r(t)+∆t ⋅ v(t+ 1
2
∆t), (1.34)

v(t+∆t) = v(t+ 1
2
∆t)+∆tF(t+∆t)

2m
. (1.35)

14 introduction

The velocity-Verlet integrator advances the velocities first by half a
step and then the positions by a full step, and finally the velocities
are updated again by half a step with the current forces, eliminating
the need to maintain forces of two time steps in the memory. It has
been found that although in short time the velocity-Verlet integrator
produces somewhat energy fluctuations, in long time the drift in
energy is quite minimal.30

There are other forms of Verlet integrators, for example, the classical
form of Verlet integrator and “leap frog” form of Verlet integrator.
Despite the different forms they are essentially the same.

1.5 periodic boundary conditions

Periodic boundary conditions (PBCs) are a set of conditions for the
simulation box in a MD simulation to mimic a homogeneous bulk
environment and eliminate boundaries or surfaces. To illustrate this
concept, a two-dimensional example is shown in Figure 1.6. In this
case the central cell containing four water molecules is replicated
in both directions to create eight periodic images with the water
molecules occupying the same locations in their respective image cell
as they do in the central cell. Similarly in a three-dimensional system
with periodic boundary conditions the central cell has 26 periodic
images. With PBCs the computation of the potential energy and the

Figure 1.6: A two-dimensional illustration of periodic boundary conditions.
The central cell in the bold rectangle is the initial image containing four water
molecules, which is surrounded by its eight periodic images. Two arrows
point to the periodic images of the water molecule.

forces must take into account the particles in the periodic images:

U = 1
2
∑
i,j,n

′u(∣rij +nL∣), (1.36)

1.6 thermostats and barostats 15

where L is the length of the cubic box, and n is a vector designating
the periodic image, and i and j are the indices of atoms. The prime in
Equation 1.36 indicates that i ≠ j when n = 0.

Usually the force fields are truncated when distance between two
atoms are outside the cutoff distance rc, which means that computing
all pairwise interactions is inefficient. Instead, potentials and forces
are computed according to the minial-image convention, where only
atoms that fall within the cutoff distance are accounted.

1.6 thermostats and barostats

1.6.1 the Stochastic Rescaling Thermostat

The thermostat controls the temperature of a system so that MD simu-
lations can sample the NVT and the NPT ensembles. The thermostat
used in most simulations in this work is the stochastic rescaling ther-
mostat developed by Bussi & Parrinello.32 The velocities are modified
by a scaling factor every step after the integration step performed by
an integrator e. g., the velocity-Verlet integrator. For the target inverse
temperature β, the average kinetic energy K̄ = Nf

2β
, and Nf is the de-

gree of freedom. The dynamics of kinetic energy K of the stochastic
rescaling thermostat can be written as the following equation:

dK = (K̄−K)dt
τ
+ 2

¿
ÁÁÀKK̄

Nf

dW√
τ

, (1.37)

in which dt is the time step, τ is a relaxation parameter chosen by the
user with the dimension of time, and lastly dW is a Wiener noise. The
stochastic rescaling thermostat modifies the velocities with the same
scaling factor, no additonal self-consistency procedures are needed to
enforce rigid bond constraints.

1.6.2 the Parrinello-Rahman Barostat

The real world experiments are carried out under a constant pressure
rather than a constant volume. To simulate the constant pressure,
the volume of the system box has to be adjusted in the process. In
other words, the volume V is a dynamic variable in constant-pressure
simulations. A three-dimensional unit cell can be represented by the
vectors a, b and c, as illustrated by Figure 1.7. The volume V = a ⋅b×c.
The three components can be written in a 3× 3 cell matrix h as

h =
⎛
⎜⎜⎜
⎝

ax bx cx

ay by cy

az bz cz

⎞
⎟⎟⎟
⎠

. (1.38)

16 introduction

b
a

c

γ
β α

Figure 1.7: An example of a triclinic simulation box.

The volume V is equal to det(h), the determinant of the cell matrix h.
With cell matrix h, the absolute coordinates of atoms can be replaced
with a product of relative coordinates with the cell matrix so that the
box size volume can evolve in the dynamics. In the Parrinello-Rahman
barostat33 the cell matrix evolves according to

dh2

dt2
= VW−1h′−1(P−Ptg), (1.39)

where W is a matrix parameter that determines the strength of the
coupling. The matrices P and Ptg are the current pressure and the
target pressure, respectively. With Parrinello-Rahman barostat the
dimensions of the unit cell can be evolved isotropically or anisotropi-
cally.

references

1. Miramontes, P. Un Modelo de Autómata Celular Para La Evolu-
ción de Los Ácidos Nucleicos [A Cellular Automaton Model for
the Evolution of Nucleic Acids] (1992).

2. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H.
& Teller, E. Equation of State Calculations by Fast Computing
Machines. The Journal of Chemical Physics 21, 1087–1092 (June 1,
1953).

3. Alder, B. J. & Wainwright, T. E. Phase Transition for a Hard
Sphere System. The Journal of Chemical Physics 27, 1208–1209

(Nov. 1, 1957).

4. Alder, B. J. & Wainwright, T. E. Studies in Molecular Dynamics.
I. General Method. The Journal of Chemical Physics 31, 459–466

(Aug. 1, 1959).

5. Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular
Dynamics. Journal of Computational Physics 117, 1–19 (Mar. 1, 1995).

1.6 thermostats and barostats 17

6. Abraham, M. J. (, Murtola, T., Schulz, R., Páll, S., Smith, J. C.,
Hess, B. & Lindahl, E. GROMACS: High Performance Molecular
Simulations through Multi-Level Parallelism from Laptops to
Supercomputers. SoftwareX (Sept. 1, 2015).

7. Berendsen, H., van der Spoel, D. & van Drunen, R. GROMACS: A
Message-Passing Parallel Molecular Dynamics Implementation.
Computer Physics Communications 91, 43–56 (Sept. 2, 1995).

8. Hess, B., Kutzner, C., van der Spoel, D. & Lindahl, E. GROMACS
4: Algorithms for Highly Efficient, Load-Balanced, and Scalable
Molecular Simulation. Journal of Chemical Theory and Computation
4, 435–447 (Mar. 1, 2008).

9. Lindahl, E., Hess, B. & van der Spoel, D. GROMACS 3.0: A Pack-
age for Molecular Simulation and Trajectory Analysis. Molecular
modeling annual 7, 306–317 (Aug. 1, 2001).

10. Páll, S., Abraham, M. J., Kutzner, C., Hess, B. & Lindahl, E.
Tackling Exascale Software Challenges in Molecular Dynamics Simu-
lations with GROMACS in Solving Software Challenges for Exascale
(Springer International Publishing, Cham, 2015), 3–27.

11. Pronk, S. et al. GROMACS 4.5: A High-Throughput and Highly
Parallel Open Source Molecular Simulation Toolkit. Bioinformatics
(Oxford, England) 29, 845–854 (Apr. 1, 2013).

12. Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E.
& Berendsen, H. J. C. GROMACS: Fast, Flexible, and Free. Journal
of Computational Chemistry 26, 1701–1718 (Dec. 2005).

13. BEKKER, H., BERENDSEN, H., DIJKSTRA, E., ACHTEROP, S.,
VONDRUMEN, R., VANDERSPOEL, D., SIJBERS, A., Keegstra,
H. & RENARDUS, M. GROMACS - A PARALLEL COMPUTER
FOR MOLECULAR-DYNAMICS SIMULATIONS: 4th Interna-
tional Conference on Computational Physics (PC 92). PHYSICS
COMPUTING ’92, 252–256 (1993).

14. Guzman, H. V., Tretyakov, N., Kobayashi, H., Fogarty, A. C.,
Kreis, K., Krajniak, J., Junghans, C., Kremer, K. & Stuehn, T.
ESPResSo++ 2.0: Advanced Methods for Multiscale Molecular
Simulation. Computer Physics Communications 238, 66–76 (May 1,
2019).

15. Halverson, J. D., Brandes, T., Lenz, O., Arnold, A., Bevc, S.,
Starchenko, V., Kremer, K., Stuehn, T. & Reith, D. ESPResSo++: A
Modern Multiscale Simulation Package for Soft Matter Systems.
Computer Physics Communications 184, 1129–1149 (Apr. 1, 2013).

16. Marrink, S. J., de Vries, A. H. & Mark, A. E. Coarse Grained
Model for Semiquantitative Lipid Simulations. The Journal of
Physical Chemistry B 108, 750–760 (Jan. 1, 2004).

18 introduction

17. Bonomi, M. et al. PLUMED: A Portable Plugin for Free-Energy
Calculations with Molecular Dynamics. Computer Physics Commu-
nications 180, 1961–1972 (Oct. 1, 2009).

18. Bonomi, M. et al. Promoting Transparency and Reproducibility
in Enhanced Molecular Simulations. Nature Methods 16, 670–673

(Aug. 1, 2019).

19. Tribello, G. A., Bonomi, M., Branduardi, D., Camilloni, C. & Bussi,
G. PLUMED 2: New Feathers for an Old Bird. Computer Physics
Communications 185, 604–613 (Feb. 2014).

20. Shaw, D. E. et al. Anton 3: Twenty Microseconds of Molecular Dy-
namics Simulation before Lunch in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis (Association for Computing Machinery, New York, NY,
USA, Nov. 14, 2021), 1–11.

21. Chandler, D. & Wu, D. Introduction to Modern Statistical Mechanics
(Oxford University Press, 1987).

22. Tuckerman, M. Statistical Mechanics: Theory and Molecular Simula-
tion (OUP Oxford, 2010).

23. McQuarrie, D. Statistical Mechanics (University Science Books,
2000).

24. Allen, M. P. & Tildesley, D. J. Computer Simulation of Liquids: Second
Edition 2nd ed. 640 pp. (Oxford University Press, Oxford, 2017).

25. Hénin, J., Lelièvre, T., Shirts, M. R., Valsson, O. & Delemotte,
L. Enhanced Sampling Methods for Molecular Dynamics Simulations
Feb. 8, 2022. arXiv: 2202.04164 [cond-mat, physics:physics].

26. Stone, A. The Theory of Intermolecular Forces 2nd ed. 352 pp. (Ox-
ford University Press, Oxford, 2013).

27. Frenkel, D. & Smit, B. in Understanding Molecular Simulation (Sec-
ond Edition) 291–320 (Academic Press, San Diego, Jan. 1, 2002).

28. Leitold, C. & Dellago, C. Folding Mechanism of a Polymer Chain
with Short-Range Attractions. The Journal of Chemical Physics 141,
134901 (Oct. 7, 2014).

29. Wilson, S. R., Gunawardana, K. G. S. H. & Mendelev, M. I. Solid-
Liquid Interface Free Energies of Pure Bcc Metals and B2 Phases.
The Journal of Chemical Physics 142, 134705 (Apr. 7, 2015).

30. Frenkel, D. & Smit, B. in Understanding Molecular Simulation (Sec-
ond Edition) 63–107 (Academic Press, San Diego, Jan. 1, 2002).

31. Swope, W. C., Andersen, H. C., Berens, P. H. & Wilson, K. R.
A Computer Simulation Method for the Calculation of Equi-
librium Constants for the Formation of Physical Clusters of
Molecules: Application to Small Water Clusters. The Journal of
Chemical Physics 76, 637–649 (Jan. 1, 1982).

https://arxiv.org/abs/2202.04164

1.6 thermostats and barostats 19

32. Bussi, G. & Parrinello, M. Accurate Sampling Using Langevin
Dynamics. Physical Review E 75 (May 25, 2007).

33. Parrinello, M. & Rahman, A. Polymorphic Transitions in Single
Crystals: A New Molecular Dynamics Method. Journal of Applied
Physics 52, 7182–7190 (Dec. 1, 1981).

2 E N H A N C E D S A M P L I N G
M E T H O D S

Although the computing capabilities of modern CPUs and GPUs have
increased tremendously over the last few decades, MD simulations are
still limited to microseconds in timescale, and rarely do they reach mil-
liseconds without specially designed hardware.1 While microseconds
are enough for many topics of research, such as properties of simple
liquids or dynamics associated with nonhydrodynamic modes, many
stochastic phenomena occur at much longer timescales and demands
an approach other than the conventional brute-force molecular dynam-
ics simulations.2 When two local free energy minima are separated
by a free energy barrier reaching a few kBT in height, the transitions
between the two states quickly become so slow that the transitions are
now known as so-called rare events.

One example of a rare event, which is often used as a test study
case for enhanced sampling development, is the interconversion of
two conformers of alanine dipeptide in vacuum, which differ from
each other in the conformation that the Cβ methyl group adopts. One
conformer has an equatorial Cβ relative to the backbone atoms, while
the other has an axial Cβ. Conventional molecular dynamics simula-
tions can no longer sufficiently sample the free energy landscape of
the conversion of the conformers, owing to a free energy barrier up
to 20kBT between the conformers. To address the issue of rare events,
researchers have developed various enhanced sampling methods to
overcome challenges in timescale in MD simulations.

Various enhanced sampling methods have been developed for differ-
ent purposes, some for the computation of the kinetic rate constant of
a process, and others for sampling the free energy landscape. Several
methods that are based the transition state theory include transition
path sampling (TPS),3 forward flux sampling (FFS),4 milestoning,5 to
name just a few. In transition path sampling, a Monte Carlo sampling
of the transition paths is conducted by generating new trajectories
from a configuration from an existing trajectory that connects the two
metastable states by shooting forwards and backwards with modi-
fied velocities, as illustrated by Figure 2.1. The transition rate is then
computed with the mean first passage time of barrier crossing from
the collection of generated trajectories known as “Transition Path En-
semble”. Transition path sampling uses order parameters, which are
functions of the configurations, to distinguish the initial state and
final state and as signals to terminate simulations with successful
trajectories linking the initial state and the final state.

21

22 enhanced sampling methods

A B

1

2

3

Figure 2.1: Schematic illustration of the shooting moves from existing trajec-
tories connecting the initial state (A) and the final state (B) in transition path
sampling. The figure is inspired by Figure 3 of Reference Bolhuis et al. [3].

In forward flux sampling, an order parameter λ is used to delineate
interfaces along the transition pathway from the initial state to the
final state. Simulations are started from the initial state to collect
configurations that have crossed the first interface, from which new
simulations are launched to cross the next interface, so on and so forth
until the final state has been reached. A Transition Path Ensemble is
eventually collected. The probability of crossing from one interface to
another can be computed, and the rate of transition from the initial
state to the final state is obtained. Similarly in milestoning milestones
are demarcated along the transition path, however short trajectories are
launched from all milestones instead of only starting from the initial
state. In the end the probability of crossing the milestones and the
mean first passage time are also obtained. In milestoning equilibrium
around the milestones is assumed, whereas no such assumption is
made in forward flux sampling. Schematic illustrations of forward
flux sampling and milestoning are given in Figure 2.2. Notice that
these methods harvest short trajectories instead of long trajectories
connecting both the initial and final states.

A B

(a)

A

B

(b)

Figure 2.2: A schematic illustration of forward flux sampling (a) and mileston-
ing (b). The different line types or colors represent different short trajectories.

enhanced sampling methods 23

In another type of enhanced sampling methods, multiple replicas
or walkers of the same system are run in parallel simulations at in-
creasing temperatures. The spacing of the temperatures normally
follow the geometric rule. During the simulation periodic swaps of
temperatures between neighboring replicas are attempted. Neighbors
with the difference in energy conforming to the Metropolis criterion
exchange their temperatures by rescaling their velocities to the target
temperature; those that do not conform to the criterion do not ex-
change their temperatures. This method is known parallel tempering,
or replica-exchange molecular dynamics (REMD). In parallel temper-
ing simulations, systems climb a ladder of elevated temperatures may
eventually overcome the free energy barrier at high temperatures and
visit regions of the configuration space that is previously inaccessible
at lower temperatures. In the end a more complete picture of the free
energy landscape is achieved.

1

2

3

4

2

1

3

4

2

3

1

4

Figure 2.3: An illustration of replica-exchange molecular dynamics simula-
tions with four walkers. Warmer colors indicate higher temperatures, and
cooler colors indicate lower temperatures. The check mark indicates a suc-
cessful exchange, and the cross means an unsuccessful exchange.

The final group of enhanced sampling methods that we introduce
employs an external bias potential, which includes umbrella sampling,
metadynamics and its various variants, and the variationally enhanced
sampling method, only to give a few examples that are most relevant
to this work. It is not meant to be a complete list. The bias potential
effectively reduces the height of the free energy barrier in order to
induce much faster transitions across it. The bias potential is defined
as a function of CVs. Similar to previously mentioned order parame-
ters, collective variables are also functions of the configuration space
r, which can discriminate different states. More often than not, one
single CV does not suffice and several are needed so that different
metastable states can be distinguished. In essence the high dimen-
sional configuration space r is now effectively represented by a low
dimensional CV space s. The low dimensionality of the CV space also

24 enhanced sampling methods

aids us in visualizing the free energy surface. Another requirement
for CVs is that they must be differentiable and smooth so that forces
derived from the bias potential are smooth. The choice of CVs plays a
crucial role in the success of this group of enhanced sampling methods.
Poor choices of CVs can result in a low efficiency of the sampling, and
lead the system to long stays in irrelevant regions of the configuration
space as they ultimately contribute very little to the unbiased free
energy landscape. However, how to choose proper CVs would not be
a focal point of this thesis. The function form of the bias potential
can be quite flexible. In umbrella sampling, a harmonic potential is
commonly used for the bias potential, while in metadynamics the
bias potential is comprised of a sum of Gaussian kernel functions. In
comparison, the bias potential is expressed as a linear combination
of bias functions, for which there are many choices, in variationally
enhanced sampling. More details of these methods are presented in
the next few sections of this chapter.

Ideally collective variables should represent the slowest degrees
of freedom so that enhanced sampling methods are most effective
in driving barrier crossings.6 While physical and chemical intuition
is invaluable in designing or finding the right collective variables,
more and more machine learning methods have been developed to
automatically identify these slow modes of motions. Some of these
methods can be found in the introduction of reference [6].

2.1 umbrella sampling

Umbrella sampling (US)7 is one of the first enhanced sampling methods
with an external bias potential. Torrie & Valleau developed umbrella
sampling to compute the free energy of Lennard-Jones clusters relative
to that of the soft-sphere clusters in Monte Carlo simulations, which
had previously been computed8. The Lennard-Jones potential and
soft-sphere potential are

ULJ(r) = 4ε [(
σ

r
)
12

− (σ
r
)
6

] , (2.1)

Usoft(r) = 4ε(
σ

r
)
12

, (2.2)

respectively. The Helmholtz free energy A of Lennard-Jones clusters
is related to the Helmholtz free energy A0 of soft-sphere clusters:

A

kBT
− A0

kBT0
= − ln ⟨exp(− U

kBT
+ U0

kBT0
)⟩

0

= − ln ⟨exp(−∆U∗)⟩0 ,

= − ln∫
∞

−∞
f0(∆U∗) exp(−∆U∗)d∆U∗.

(2.3)

2.2 metadynamics and well-tempered metadynamics 25

in which ⟨⋅⟩0 represents the canonical ensemble average of the ref-
erence system, i. e., the soft-sphere cluster. U∗ = U

kBT
is the reduced

energy, and f0(∆U∗) is the probability density of U∗ in the reference
system. In order to use Equation 2.3 to compute A, the sampling
is conducted on the reference system (soft-sphere clusters) rather
than the system of interest (Lennard-Jones clusters) to obtain f0(∆U∗).
The probability density of the system of interest f(∆U∗), after some
rearrangement of Equation 2.3, is

f(∆U∗) = f0(∆U∗) exp(−∆U∗)Q0/Q, (2.4)

in which Q and Q0 are the configurational partition function of the
system of interest and the reference system. What Equation 2.4 in-
forms us is that the accuracy of Equation 2.3 depends on the overlap of
the two distributions f(∆U∗) and f0(∆U∗), both of which are sharply
peaked. In consequence, conventional Monte Carlo simulations of
either the reference system or the system of interest cannot sample
the probability density of ∆U∗ of the other system sufficiently. To
overcome this issue, the authors added a bias potential V(∆U∗) to
sample as broad a distribution of ∆U∗ as possible on the reference
system. However, with the external bias potential V(∆U∗), the bi-
ased simulations sample a biased distribution fv(∆U∗) instead of the
unbiased f0(∆U∗). To recover the unbiased distribution:

f0(∆U∗) =
fv(∆U∗)/V(∆U∗)

⟨1/V⟩V
, (2.5)

where ⟨⋅⟩V represents an average of the biased ensemble.
Since its initial introduction, umbrella sampling has gone through

many developments. For example, the most recognizable form of
umbrella sampling draws on running biased simulations in multiple
windows, each window with their harmonic bias potential and target
CV values.9 Newer developments include the adaptive bias umbrella
sampling and weighted histogram analysis method (WHAM), which
is a postprocessing method to estimate free energy surface from the
umbrella sampling simulations. Readers are referred to the review by
Kästner [10] on these topics.

2.2 metadynamics and well-tempered meta-
dynamics

In the conventional forms of umbrella sampling the bias potential
is in a harmonic function form such as V(s) = Ki(s − s0i)2. It is
chosen in advance of the biased simulation, and is stationary. In other
words, the bias potential is the function only of the chosen CVs and
independent of time. For example, the target value of CV s0i for each
window and the prefactors Ki for the harmonic potentials are chosen

26 enhanced sampling methods

ahead of the simulations and do not change during the course of the
simulations. Fixing the bias potential in advance of the simulations
can be less optimal, when all metastable states are not known prior to
the simulations, making it extremely difficult to select the windows for
those states. Finding the proper prefactors for the harmonic potentials
is also an issue. When the prefactors are too low, transitions across
free energy barriers are not significantly boosted; when they are too
large, the biased distributions between windows do not have enough
overlap for users to accurately estimate the FES.

Laio & Parrinello introduced metadynamics in 2002.11 Metadynam-
ics is a technique that combines free energy surface exploration and
enhanced sampling. Similar to umbrella sampling, metadynamics
adds an external bias potential on the CV space to accelerate transi-
tions between states, it does so by gradually building up the bias,
rather than setting a fixed one in advance. Gaussian kernels are added
to the CV space that has been visited by the system. The bias potential
nudges the system away from its current region in the CV space into
unexplored regions. The gradually growing bias potential eventually
pushes the system over the free energy barrier into other metastable
states. Unlike umbrella sampling, where users have to manually set
the windows along the transition path, a challenging task especially
in a multidimensional CV space, the system is allowed much more
freedom to explore different paths and states. Also similar to umbrella
sampling, the quality of the CVs is critical for the success of methods.

This initial development of metadynamics is usually referred to as
the conventional metadynamics. A newer and more popular variant of
metadynamics dubbed well-tempered metadynamics (WTMetaD) has
been developed by Barducci, Bussi & Parrinello.12,13 In both variants,
the bias potential is evolved by periodically adding to it a Gaussian
kernel. In the conventional metadynamics the height of the Gaussian
kernels stays constant, while it decreases with a preceding scaling
factor related to the previous bias potential in WTMetaD. We give more
detailed introductions to metadynamics and well-tempered metady-
namics in the next two subsections.

2.2.1 the Conventional Metadynamics

As stated above, metadynamics is an enhanced sampling method with
a history-dependent bias potential. Periodically Gaussian kernels on
the point of the CV space at the deposition step are added. The system
are gradually moved into unexplored regions of the CV space. The
Gaussian kernel being deposited is:

G(s,s′) =We−∥s−s′∥2 , (2.6)

2.2 metadynamics and well-tempered metadynamics 27

where W is the height of the Gaussian kernel, and ∥s− s′∥ is metric
of the distance between s and s ′. When G(s,s′) is a multivariate
Gaussian, as often it is

∥s− s′∥ = 1
2
∑
i,j
(si − s′i)∑−1i,j(sj − s ′j), (2.7)

in which ∑i,j is the covariance matrix, and ∑−1i,j is its inverse. Here
∑i,j is only taken with the diagonal members of the matrix, i. e.,
∑i,j = δi,jσ

2
i , in which σi is the width of the Gaussian kernels for the

ith CV, which is chosen by the user often according to the fluctuations
of the CV in unbiased simulations. Equation 2.6 can be rewritten as:

G(s,s′) =W exp [−1
2

d

∑
i=1

(si − s ′i)2

σ2i
] , (2.8)

in which d is the dimension of the CV space. In metadynamics every
τG steps a new Guassian kernel is deposited, so the current bias
potential V(s, t) at time t is:

V(s, t) =
nτG

∑
t′=τG,2τG,⋯

t ′<t

W exp
⎧⎪⎪⎨⎪⎪⎩
−1
2

d

∑
i=1

[si(t)− si(t ′)]2

σ2i

⎫⎪⎪⎬⎪⎪⎭
, (2.9)

where W is the height of the Gaussian kernels and a constant in the
conventional metadynamics. The integer n on the top of summation
is the number of iterations of depositions of Gaussian kernels that has
been completed by the time t.

As a metadynamics simulation progresses, the height of the bias
potential grows with every addition of the Gaussian kernel. Eventually
it fills up the valley of the local free energy minima, and the free energy
barrier is no longer an impediment to fast transitions between states.
The dynamics of such transitions has become quite diffusive in the CV

space. In the long time limit the bias potential fluctuates around the
negative of the free energy surface, as illustrated in Figure 2.4.

In conventional metadynamics, the underlying free energy surface
can be estimated as the time-average of the negative bias potentials
after a time tfill when the local free energy has been filled14:

F(s) = − 1

t− tfill

t

∑
t ′=tfill

Vt ′(s). (2.10)

2.2.2 Well-tempered Metadynamics

As shown in Figure 2.4 and Section 2.2.1, in the conventional metady-
namics the bias potential grows constantly. Therefore, it is difficult
to know when to terminate a conventional metadynamics simulation.
It is also unsatisfactory and aesthetically displeasing that the bias

28 enhanced sampling methods

CV

Free Energy

V(s, t4)

V(s, t3)

V(s, t1)

V(s, t2)

Figure 2.4: A schematic illustration of the growth of the time dependent bias
potential V(s, t) with the time in a metadynamics simulation.

potential does not reach a stationary state in the long time limit. This
situation however has been remedied with the development of well-
tempered metadynamics.12 In WTMetaD, the height of the Gaussian
kernel is not constant anymore. A scaling factor that modifies its
height is included to take into account the history of past visited states.
Hence, both the height and the location of the Gaussian are history
dependent. Each iteration of the bias potential is:

Vn(s) = Vn−1(s)+G(s,sn)e−
1

γ−1
βVn−1(sn), (2.11)

where V0(s) = 0, and β is the inverse temperature. γ is called the bias
factor.

Thus the real time bias potential at time t in the CV space s is:

V(s, t) =
nτG

∑
t′=τG,2τG,⋯

t ′<t

We
− 1

2 ∑
d
i=1

[si(t)−si(t
′
)]

2

σ2
i e

− 1
γ−1

βVt ′−τG
(s(t ′)), (2.12)

or we can rewrite V(s, t) using the iteration of Guassian deposition k
instead of the time of deposition t ′ for simplicity:

V(s, t) =
n

∑
k=1

We−∥s−sk∥2e−
1

γ−1
βVk−1(sk). (2.13)

Equation 2.11 describes the stochastic iteration of the bias potential
V(s, t), as a result of which, the evolution of the bias potential can be
described asymptotically by an ordinary differential equation, which
reads

dV(s, t)
dt

= ∫ ds ′G(s,s ′) exp [− 1

γ− 1βV(s
′, t)]pV(s ′, t), (2.14)

in which pV(s, t) is the biased distribution of the CV space, and it is
given by

pV(s, t) = e−β[F(s)+V(s,t)]

∫ dse−β[F(s)+V(s,t)] . (2.15)

2.3 reweighting of well-tempered metadynamics simulations 29

The formal derivation of Equation 2.14 and Equation 2.15 can be found
in references [15, 16]. Equation 2.15 has the asymptotic solution

V(s, t) = −(1− 1
γ
)F(s)+ c(t), (2.16)

where c(t) is a time-dependent constant defined as

c(t) = 1
β

log ∫ dse−βF(s)

∫ dse−β[F(s)+V(s,t)] . (2.17)

c(t) is a time-dependent constant. The convergence property of the
bias potential described in Equation 2.16 has contributed to the higher
popularity of well-tempered metadynamics compared to the conven-
tional metadynamics. It has also provided a way to estimate the free
energy surface from the bias potential.

The biased probability distribution that WTMetaD simulations sample
is called the well-tempered distribution. It is related to the underlying
probability distribution p(s) by:

pV(s) =
[p(s)]1/γ

∫ ds[p(s)]1/γ
, (2.18)

where γ is a real number greater than 1. This relationship is illustrated
in Figure 2.5. The free energy barrier in the well-tempered distribution
is significantly lower than that of the unbiased distribution. By taking
the logarithm on both sides of Equation 2.18, one obtains that the
biased free energy FV(s) = F(s)

γ
. It is evident that free energy barriers

are reduced by the same bias factor. The bias factor γ can also be
written as γ = (T +∆T)/T . It can be viewed that well-tempered meta-
dynamics simulations sample the CV space at a higher temperature
T +∆T .

A B

p(s)

CVPr
ob

ab
ili

ty
D

is
tr

ib
ut

io
n

A B

pV(s)∝ [p(s)]1/γ

CV

Figure 2.5: The relationship between the well-tempered distribution and the
unbiased distribution.

2.3 reweighting of well-tempered metady-
namics simulations

Although Equation 2.16 already provides a way to obtain the free en-
ergy surface, a reweighting method is still needed for well-tempered

30 enhanced sampling methods

metadynamics when we want to estimate the free energy surface pro-
jected to other CVs that are not directly biased in the well-tempered
metadynamics simulations. As the bias potential in the well-tempered
metadynamics simulation is not static, it would be incorrect to reweight
the well-tempered metadynamics simulations the same way as it is
done in Equation 2.5 for umbrella sampling. Two ways have been de-
veloped to address the need to reweight well-tempered metadynamics
simulations, which are introduced in the next two subsections.

2.3.1 Residual Bias Reweighting

Residual bias reweighting, which is also called c(t) reweighting, was
developed by Tiwary & Parrinello.17 It uses the same time-dependent
constant c(t) already mentioned in Equation 2.17, which is an esti-
mator of the reversible work done by the bias potential. There are a
number of ways to compute c(t). First we introduce the free energy
estimator of the well-tempered metadynamics simulations:

F(s) = −(γ

γ− 1)V(s, t)+ 1
β

log∫ ds exp [γ

γ− 1βV(s, t)] . (2.19)

By plugging Equation 2.19 into Equation 2.17, we obtain

c(t) = 1
β

log
∫ ds exp [γ

γ−1βV(s, t)]

∫ ds exp [1
γ−1βV(s, t)]

. (2.20)

Using Equation 2.20 one can calculate the average of the observable
O(r) from a well-tempered metadynamics trajectory with

⟨O(r)⟩ = ⟨O(r)eβ[V(s(r),t)−c(t)]⟩
V

. (2.21)

The reweighted free energy surface projected onto the CV space s ′,
which could be the same as s, can be computed as

F(s ′) = − 1
β

log∫ dr δ[s ′ − s ′(r)]eβ[V(s(r),t)−c(t)] +C. (2.22)

2.3.2 Last Bias Reweighting

Last bias reweighting18 uses the weights calculated from the final form
of a well-tempered metadynamics simulation to compute the average
of an observable:

⟨O(r)⟩ = ⟨O(r)e
βV(s(r),tlast)⟩V

⟨eβV(s(r),tlast)⟩V
. (2.23)

And the reweighted free energy surface F(s ′) is

F(s ′) = − 1
β

log∫ dr δ[s ′ − s ′(r)]eβV(s(r),tlast) +C. (2.24)

2.4 variationally enhanced sampling 31

2.4 variationally enhanced sampling

In 2014 Valsson & Parrinello developed the variationally enhanced
sampling (VES) method as a new way to find a bespoke bias potential
for enhanced sampling.19 First a functional Ω of the bias potential
V(s) is defined in VES as:

Ω[V] = 1
β

log ∫ ds e−β[F(s)+V(s)]

∫ ds e−βF(s) +∫ dsptg(s)V(s), (2.25)

where s are the biased CVs, and F(s) is the free energy surface projected
to the s, ptg(s) is a probability distribution of s predefined by a user
and referred to as the target distribution. It has been proven thatΩ is a
convex functional. In other words, Ω has a global minimum, the only
point where the gradient of Ω, ∂Ω[V(s)]

∂V(s) is equal to 0. Furthermore, at
the global minimum of Ω the bias potential V(s) is related to the FES

F(s) and the target distribution ptg(s) by:

V(s) = −F(s)− 1
β

logptg(s)+C, (2.26)

in which C is a nonconsquential constant that can be ignored. Fi-
nally, pV(s), the biased distribution of s is equal to the user-defined
target distribution ptg(s) at the global minimum of Ω. A simplistic
choice for ptg(s) would be the uniform distribution. Clearly, it would
not be the most efficient choice. More commonly the well-tempered
distribution has been used for VES.20 The relationship between the
well-tempered distribution and the unbiased distribution has been
illustrated in Figure 2.5. As the unbiased distribution (p(s)) is un-
known prior to the simulations, the well-tempered distribution must
be updated iteratively during the run of the simulation so that it can
more accurately reflect the true probability distribution.20

The variationally enhanced sampling is related to both relative
entropy21,22 and the Kullback-Leibler divergence23. The function Ω
can be rewritten as

βΩ[V(s)] =DKL(ptg(s)∣∣pV(s))−DKL(ptg(s)∣∣p(s)), (2.27)

in which DKL(⋅∣∣⋅), the Kullback-Leibler divergence is a metric of the
difference between two probability distributions. Minimizing Ω[V(s)]
is akin to the minimization of the Kullback-Leibler divergence between
the biased distribution pV(s) and the target distribution ptg(s).

2.4.1 Variational Optimization Process

Variationally enhanced sampling prescribes a variational approach
of finding the bias potential V(s) that minimizes Ω. We start first by

32 enhanced sampling methods

representing the bias potential V(s) as a linear combinations of bias
functions fk(s):

V(s;α)=∑
k

αkfk(s). (2.28)

The bias functions fk(s) are differentiable functions of the CVs. Cur-
rently the choice of basis functions include Legendre polynomials,
Chebyshev polynomials, Fourier cosine or sine series and so on. The
coefficients α = (α1,α2, . . . ,αk) are the variational parameters that are
optimized during the biased simulation. To find the global minimum
of Ω where ∂Ω[V(s)]

∂V(s) = 0, we need to compute the gradient and the
Hessian ofΩ(α). An element of the gradient ∇Ω(α) can be computed:

∂Ω(α)
∂αi

= − ⟨∂V(s;α)
∂αi

⟩
V(α)

+ ⟨∂V(s;α)
∂αi

⟩
ptg

, (2.29)

and similarly the elements of the Hessian HΩ(α) can be computed
as:

∂2Ω(α)
∂αi∂αj

= βCov [∂V(s;α)
∂αj

,
∂V(s;α)
∂αi

]
V(α)

− ⟨∂
2V(s;α)
∂αj∂αi

⟩
V(α)

+ ⟨∂
2V(s;α)
∂αj∂αi

⟩
ptg

.
(2.30)

In Equation 2.29 and Equation 2.30, ⟨⋅⟩V(α) denotes an average over
the biased ensemble, and ⟨⋅⟩ptg denotes an average over the target
distribution. Both equations can be simplified when we employ a
linear expression for the bias potential:

∂Ω(α)
∂αi

= −⟨fi(s)⟩V(α) + ⟨fi(s)⟩ptg , (2.31)

∂2Ω(α)
∂αj∂αi

= βCov[fj(s), fi(s)]V(α). (2.32)

⟨fi(s)⟩V(α) can be computed by sampling during the biased simula-
tion, while ⟨fi(s)⟩ptg can be computed analytically, as ptg(s) and fi(s)
are both chosen by the users. The covariance Cov[fj(s), fi(s)]V(α) can
also be computed from the biased simulations. As both Equation 2.31

and Equation 2.32 are computed statistically, they are noisy in nature.
As a result, the variational parameters can display large fluctuations
between updates, making it difficult to reach a stable bias potential. It
has been found that the averaged stochastic gradient descent-based
optimization method24 works well to address the issue of large fluctu-
ations. The variational parameters at iteration n, α(n), are updated
according to

α(n+1) = α(n) −µ [∇Ω(ᾱ(n))+HΩ(ᾱ(n))[α(n) − ᾱ(n)]] , (2.33)

2.4 variationally enhanced sampling 33

in which µ is the step size of the update, a parameter chosen by the
user prior to the simulation, and the average variational parameters
ᾱ(n) = (n+ 1)−1∑n

k=0α
(k). Only the diagonal elements of HΩ(ᾱ(n))

are used in the update. The evolution of ᾱ is considerably smoother
with Equation 2.33, as illustrated in Figure 2.6. The update is per-
formed between every a number of time steps per iteration. The length
between updates is called the stride in VES. The free energy surface can

−30

−20

−10

0

10

20

30

0 2 4 6 8 10

C
oe

ffi
ci

en
ts

[k
J/

m
ol

]

Time [ns]

Coeff 1

Coeff 2

Coeff 3

Coeff 4

Coeff 5

Figure 2.6: The time series of five coefficients of α (thin) and their average
coefficients ᾱ (thick) of VES simulations of association of a pair of Na+ and
Cl- solutes in explicit water.

be estimated by Equation 2.26, if the bias potential and the sampling
have converged. Otherwise reweighting can be called upon for free
energy estimation.

2.4.2 Algorithmic Implementation of VES

Already mentioned in section Molecular Dynamics, PLUMED 2 imple-
ments various variants of metadynamics and variationally enhanced
sampling,25–27 and it has patches to many commonly used MD en-
gines such as LAMMPS, GROMACS, Amber and so on, so they that
work together in real time simulations in addition to in postprocessing.
The cooperation between the PLUMED 2 library and a MD engine is
illustrated in Figure 2.7. For metadynamics, the bias potential V(s) is
updated through depositions of Gaussian kernels. For variationally
enhanced sampling, it is achieved by updating the linear coefficients or
the variational parameters α in the bias potential of V(s;α). Addition-
ally, the website of PLUMED-NEST (https://www.plumed-nest.org/)
hosts voluntarily contributed PLUMED input files and other relevant
files of publications that are listed with their Digital Object Identifiers

https://www.plumed-nest.org/

34 enhanced sampling methods

Propagate positions: Calculate CVs:

Calculate and update the bias:

MD Code PLUMED 2

get positions

return bias force

Figure 2.7: An illustration of how PLUMED 2 and a MD engine work together
in a simulation.

(DOIs), which are open to all that are interested in realizing these
simulations.

references

1. Shaw, D. E. et al. Anton 3: Twenty Microseconds of Molecular Dy-
namics Simulation before Lunch in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis (Association for Computing Machinery, New York, NY,
USA, Nov. 14, 2021), 1–11.

2. Frenkel, D. & Smit, B. in Understanding Molecular Simulation (Sec-
ond Edition) 431–464 (Academic Press, San Diego, Jan. 1, 2002).

3. Bolhuis, P. G., Chandler, D., Dellago, C. & Geissler, P. L. TRANSI-
TION PATH SAMPLING: Throwing Ropes Over Rough Moun-
tain Passes, in the Dark. Annual Review of Physical Chemistry 53,
291–318 (Oct. 1, 2002).

4. Allen, R. J., Valeriani, C. & Rein ten Wolde, P. Forward Flux
Sampling for Rare Event Simulations. Journal of Physics: Condensed
Matter 21, 463102 (Oct. 26, 2009).

5. Bello-Rivas, J. M. & Elber, R. Exact Milestoning. The Journal of
Chemical Physics 142, 094102 (Mar. 7, 2015).

6. Rydzewski, J. & Valsson, O. Multiscale Reweighted Stochastic
Embedding: Deep Learning of Collective Variables for Enhanced
Sampling. J. Phys. Chem. A 125, 6286–6302 (July 22, 2021).

2.4 variationally enhanced sampling 35

7. Torrie, G. M. & Valleau, J. P. Nonphysical Sampling Distributions
in Monte Carlo Free-Energy Estimation: Umbrella Sampling. Jour-
nal of Computational Physics 23, 187–199 (Feb. 1, 1977).

8. Torrie, G. M. & Valleau, J. P. Monte Carlo free energy estimates
using non-Boltzmann sampling: Application to the sub-critical
Lennard-Jones fluid. Chemical Physics Letters 28, 578–581 (1974).

9. Virnau, P. & Müller, M. Calculation of Free Energy through
Successive Umbrella Sampling. The Journal of Chemical Physics 120,
10925–10930 (June 15, 2004).

10. Kästner, J. Umbrella Sampling. WIREs Computational Molecular
Science 1, 932–942 (2011).

11. Laio, A. & Parrinello, M. Escaping Free-Energy Minima. Proceed-
ings of the National Academy of Sciences 99, 12562–12566 (Oct. 1,
2002).

12. Barducci, A., Bussi, G. & Parrinello, M. Well-Tempered Meta-
dynamics: A Smoothly Converging and Tunable Free-Energy
Method. Physical Review Letters 100, 020603 (Jan. 18, 2008).

13. Valsson, O., Tiwary, P. & Parrinello, M. Enhancing Important
Fluctuations: Rare Events and Metadynamics from a Concep-
tual Viewpoint. Annual Review of Physical Chemistry 67, 159–184

(May 27, 2016).

14. Bussi, G. & Laio, A. Using Metadynamics to Explore Complex
Free-Energy Landscapes. Nature Reviews Physics 2, 200–212 (4 Apr.
2020).

15. Dama, J. F., Parrinello, M. & Voth, G. A. Well-Tempered Meta-
dynamics Converges Asymptotically. Physical Review Letters 112
(June 18, 2014).

16. Tiwary, P., Dama, J. F. & Parrinello, M. A Perturbative Solution
to Metadynamics Ordinary Differential Equation. The Journal of
Chemical Physics 143, 234112 (Dec. 21, 2015).

17. Tiwary, P. & Parrinello, M. A Time-Independent Free Energy
Estimator for Metadynamics. The Journal of Physical Chemistry B
119, 736–742 (Jan. 22, 2015).

18. Branduardi, D., Bussi, G. & Parrinello, M. Metadynamics with
Adaptive Gaussians. Journal of Chemical Theory and Computation 8,
2247–2254 (July 10, 2012).

19. Valsson, O. & Parrinello, M. Variational Approach to Enhanced
Sampling and Free Energy Calculations. Physical Review Letters
113, 090601 (Aug. 27, 2014).

20. Valsson, O. & Parrinello, M. Well-Tempered Variational Approach
to Enhanced Sampling. Journal of Chemical Theory and Computation
11, 1996–2002 (May 12, 2015).

36 enhanced sampling methods

21. Chaimovich, A. & Shell, M. S. Coarse-Graining Errors and Nu-
merical Optimization Using a Relative Entropy Framework. The
Journal of Chemical Physics 134, 094112 (Mar. 7, 2011).

22. De Boer, P.-T., Kroese, D. P., Mannor, S. & Rubinstein, R. Y. A Tu-
torial on the Cross-Entropy Method. Annals of Operations Research
134, 19–67 (Feb. 1, 2005).

23. Bilionis, I. & Koutsourelakis, P. Free Energy Computations by
Minimization of Kullback–Leibler Divergence: An Efficient Adap-
tive Biasing Potential Method for Sparse Representations. Journal
of Computational Physics 231, 3849–3870 (May 1, 2012).

24. Bach, F. & Moulines, E. Non-strongly-convex smooth stochastic ap-
proximation with convergence rate O(1/n) in Advances in Neural
Information Processing Systems 26 (Curran Associates, Inc., 2013).

25. Bonomi, M. et al. PLUMED: A Portable Plugin for Free-Energy
Calculations with Molecular Dynamics. Computer Physics Commu-
nications 180, 1961–1972 (Oct. 1, 2009).

26. Bonomi, M. et al. Promoting Transparency and Reproducibility
in Enhanced Molecular Simulations. Nature Methods 16, 670–673

(Aug. 1, 2019).

27. Tribello, G. A., Bonomi, M., Branduardi, D., Camilloni, C. & Bussi,
G. PLUMED 2: New Feathers for an Old Bird. Computer Physics
Communications 185, 604–613 (Feb. 2014).

3 T H E E X T P L U M E D E X T E N S I O N
A N D T H E S I N G L E - C H A I N
S M O OT H S Q U A R E -W E L L
P O LY M E R

ESPResSo++, developed and maintained by the theory group of Max
Planck Institute of Polymer Research, Mainz, is a software package
for MD simulations, that has been developed mainly for studies of
phase behaviors of polymers such as polymer melts and rheology of
polymers. PLUMED 2 is a open-source software library that provides
many functionalities to compute collective variables and performs
enhanced sampling methods on these collective variables. PLUMED 2

provides a well-documented application programming interface (API)
for multiple programming languages such as C, C++, FORTRAN,
and Python. So far PLUMED already works with many popular
MD engines, for example, Amber, DL_POLY, GROMACS, LAMMPS,
NAMD, OpenMM to name a few, but not yet with ESPResSo++. Here,
we create an interface between two codes in the form of an extension to
the integrator of ESPResSo++ so that information such as coordinates
and forces can be passed between the two codes, as illustrated in
Figure 2.7, and that they can be used together in an enhanced sampling
MD simulation. We provide details of our implementation of the
extension and demonstrate both software packages working together
in a study of the phase transition of a single chain polymer through a
pairwise smooth square-well interaction potential with well-tempered
metadynamics.

3.1 espresso++ and extplumed extension

ESPResSo++ combines a flexible user-facing Python interface and a
C++ core responsible for the intensive computational workload. This
design takes advantage of the easy scriptability of the Python language
and high performance of native C++ code. For ESPResSo++, the Par-
allel Method Invocation (PMI) Python module has been developed.1

It possesses features from both of the two models of parallelism,
namely the shared-memory thread model and the distributed-memory
message-passing model. As its name suggested, PMI module can ex-
ecute function calls in parallel. Moreover, it can also create parallel
Python class instances and make parallel calls to the class meth-
ods. ESPResSo++ heavily leverages the versatile Boost library. In

37

38 extplumed and square-well polymer

ESPResSo++ Python instances and its corresponding C++ objects in-
teract through the Boost.Python library. Communications of messages
between the C++ class objects are realized with the boost.MPI library.
Figure 3.1 illustrates the architecture and interactions between the
Python interface and the C++ core of ESPResSo++.

Python
Simulation Script

PMI
Controller

Python
Worker 2

Python
Worker 1

Python
Worker N

C++
Worker 2

C++
Worker 1

C++
Worker N

mpi4py

. . .

Boost.Python

Boost.MPI . . .

Figure 3.1: An illustration of the binding of Python and C++ in ESPResSo++.

In ESPResSo++ the velocity-Verlet integrator is implemented, which
we have introduced in Section 1.4. It propagates the dynamics in the
following three steps:

1. Update the velocities by half a time step;

2. Update the positions by a full step with updated velocities, and
update the forces at the new positions;

3. Complete the update of velocities by another half a time step
with the new forces.

ESPResSo++ places signals throughout the steps of the integrator, as
shown in Figure 3.2, so that calls to extensions to the integrator can
be made at proper time in order to, for example, compute the virial
matrix or energy. Users can also modify the forces acting on the atoms
through the already available extension ExtForce. We therefore have
chosen to implement the interface between ESPResSo++ and PLUMED
as an extension to the integrator. We name the extension ExtPlumed.
The code structure of the integrator and the ExtPlumed extension is
illustrated in Figure 3.2. The source code of the ExtPlumed extension
is included in Appendix A.

3.2 the single-chain smooth square-well polymer 39

PLUMED 2 provides two files, Plumed.h and Plumed.c, in which a
stable API to PLUMED 2 is located. Software developers can include
the two files in their own MD code to call PLUMED 2 through a few
function calls that are defined in the two files. PLUMED 2 can be
built as a static library or a shared library to a MD code. Or more
conveniently, a user can supply the PLUMED library by defining an
environment variable PLUMED_KERNEL pointing to the location of the
library libplumedkernel.so is stored.

The MD engine must pass the global MPI communicator to PLUMED
so that it can take advantage of all available processors during com-
putation. Also passed are the total number of atoms and dimensions
of the box. The positions are passed from the MD engine to PLUMED
every step so that CVs can be computed and a bias potential on the
CV can be applied. The forces and the energy derived from these bias
potentials are then passed back to the MD engine in order that they are
taken into account by the integrator when updating the velocities and
positions. PLUMED provides a stable interface to perform aforemen-
tioned functions, and they are coordinated with the signals within
the integrator (the VelocityVerlet class, Figure 3.2) of ESPResSo++ to
ensure both correctness and efficiency.

3.2 the single-chain smooth square-well
polymer

3.2.1 the Square-Well Potential and the Smooth Square-Well
Potential

The square-well potential can be written as:

U(rij) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∞ 0 < rij < σ,

−ε σ ≤ rij ≤ λσ,

0 rij > λσ.

(3.1)

In Equation 3.1 ε is the depth of the square-well, and λ is related
to the width of the square-well. The interaction sites i and j have a
strong repulsion when their distance is shorter than σ; and when their
distance is within [σ, λσ], they have a favorable interaction inside
the square well. When two interaction sites are further apart than
λσ, they do not interact with each other. The thermodynamics of
simple liquids has been studied in the form of square-well liquids,
and thermodynamics of alkanes has been studied in simulations in
the form of freely-joined square-well chain fluids2. In these studies the
parameter λ was often chosen to be 1.5. A freely-joined single-chain
square-well polymers can have complex phase behaviors depending
on the width of the well, temperature and the length of the polymer.

40 extplumed and square-well polymer

M
D

In
tegrator

+
step

:
long

long
+

dt
:

real
+M

D
Integrator(shared_ptr<System

>)
+run(int

steps)=
0

:
void

V
elocityV

erlet

-
m

axC
ut

:
real

-
langevin:

shared_ptr<Langvein>

+
runInit

:
signal<void()>

+
befIntP

:signal<void()>
+

aftIntP
:signal<void()>

+
aftC

alcF
:signal<void()>

+
befIntV

:signal<void()>
+

aftIntV
:signal<void()>

E
xten

sion
+

ExtensionType:
(therm

o,baro,...)
-

Integrator:
shared_ptr<M

D
Integrator>

-
setIntegrator():

void
-

connect():
void

-
disconnect()

:
void

E
xtP

lu
m

ed
-

plum
ed.dat

-
dt

-
restart

-
getBias()

:
real

-
connect():

void
-

disconnect()
:

void
-

setStep()
:

void
-

updateStep()
:

void
-

updateForces()
:

void

L
an

gvein
T

h
erm

ostat

+
tem

perature
:

real
+

gam
m

a
:

real
+

connection
:

boost::signal
2

+
rng

:
shared_ptr<R

N
G

>

+
setTem

perature()
:

void
+

setG
am

m
a()

:
void

+
therm

alize()
:

void

Figure
3.2:The

ExtPlum
ed

extension
is

the
interface

betw
een

PLU
M

ED
and

ESPR
esSo++.M

ethod
functions

in
the

ExtPlum
ed

class,w
hich

calls
P

L
U

M
E

D
,are

execu
ted

u
p

on
the

notifi
cations

of
the

signals
in

the
V

elocityV
erlet

class,w
hich

inherits
from

the
virtu

albase
class

M
D

Integrator.Sim
ilarly

the
LangevinTherm

ostat
is

also
im

plem
ented

as
an

Extension
so

that
m

ethod
calls

are
executed

upon
receiving

a
signalfrom

the
integrator.

3.2 the single-chain smooth square-well polymer 41

Taylor et al. have constructed an extensive phase diagram of the single-
chain square-well polymer with Monte Carlo simulations and Wang-
Landau sampling.3–6 Růžička et al. used Monte Carlo simulations and
forward flux sampling to obtain the phase diagram of single-chain
square-well polymer based on kinetic data.7,8 They have also showed
that the nonbonded contacts are a good indicator of the phase that the
square-well polymer is in. Wicks et al. used Monte Carlo simulations
with parallel tempering and a bias potential to construct free energy
surface at multiple temperatures.9

The aforementioned previous studies have concluded that the phase
behavior of the single-chain square-well polymer depends on various
parameters such as the length of the polymer, the width of the square
well. In the case of the 128 monomer long square-well polymer, it has
three metastable states when λ > 1.05. The polymer has a random coil
state, which can freeze into a crystalline state of body-centered cubic
(BCC) packing after first forming a compact globule state. When the
width λ ≤ 1.05, the freezing of the single-chain square-well polymer
goes directly from the random coil to the crystalline state without
going through another state. An example of a random coil and the
crystalline state of the single-chain square-well polymer comprised of
128 monomers can be found Figure 3.3. The phase transition between

(a) (b)

Figure 3.3: Conformations of the random coil state (a) and the crystalline
state (b) of the single-chain square-well polymer. The crystalline state adopts
the BCC packing.

the two states is a first-order process, i. e., a significant free energy
barrier lies between them. In this work we investigate the latter case
with λ = 1.05.

Leitold & Dellago designed the smooth square-well potential, which
we have introduced in Section 1.3.2, so that the square-well polymer
can be studied with MD simulations.10 Its function form is:

U(r) = ε
2
{exp [−(r−σ)

a
]+ tanh [r− λσ

a
]− 1} , (3.2)

where ε and σ are equal to 1, and λ = 1.05, and a = 0.002. The rigid
bonds of the single-chain square-well polymer are replaced with har-

42 extplumed and square-well polymer

monic bonds: U(b) = K(b−b0)2, with K = 10000. The smooth square-
well potential and the harmonic bonding potential are illustrated in
Figure 3.4. Leitold & Dellago have used transition path sampling to
study the phase transition of the smooth square-well polymer with
128 monomers at its coexistence temperature Tco = 0.428, which value
was determined with Wang-Landau sampling.10 The authors have
determined the reaction coordinate of the first-order phase transition
between the random coil and crystalline state to be a linear combina-
tion of the potential energy and Steinhardt order parameter Q6. In a
followup study Leitold et al. obtained the reaction coordinate that is
nonlinear combination of potential energy and Q6.11 They have found
that in this work that the initial stages of crystallization is dominated
by Q6, while changes in the potential energy dominate the latter stage
of the crystallization.

1 1.02 1.04 1.06 1.08

−1

0

1

2

3

r/σ

U
(r
)/
ε

Smooth Square-Well
Square-Well
Harmonic bonds

Figure 3.4: The square-well potential, the smooth square-well potential and
the harmonic bond potential.

In this work we study the phase transition of the 128-unit single-
chain smooth square-well polymer (SCP) with well-tempered metady-
namics by directly biasing the linear combination of potential energy
and Steinhardt order parameter Q6 at three temperatures. We not only
demonstrate ESPResSo++ working in tandem with PLUMED, but also
the effectiveness of the linear combination of the potential energy U
and Q6 as CV in a WTMetaD simulation of single-chain smooth square-
well polymer. We have obtained the reweighted free energy surface
estimation F(U,Q6) with two reweighting methods. We have obtained
the energy profile U(Q6) and entropy profile S(Q6) at T = 0.438, with
which we estimate the free energy surfaces at two other temperatures
by extrapolation. The coexistence temperature of the 128-monomer
single-chain smooth square-well polymer has been determined with
the free energy of crystallization at three temperatures.

3.2 the single-chain smooth square-well polymer 43

3.2.2 Simulations and Methods

We have performed our simulations with the Langevin thermostat,
with the frictional coefficient γ equal to 0.5. A developmental version
based on ESPResSo++ 2.02 was used in our simulation. The time step
is 0.0002

√
ε

mσ2 . The extremely short time step is necessary because
of the steepness of the repulsive region of the smooth square-well
potential. The single-chain polymer occupies a cubic box with a
dimension of 1000σ. The cutoff distance for pairwise interactions is
1.5σ. We ran the simulations at three temperatures, one at previously
determined Tco = 0.438, one at 0.418 with 4.6% supercooling, and the
final one at 0.458 which is 4.6% above the coexistence temperature.
PLUMED version 2.5.2 was used in the biased simulations. We ran all
three simulations for 400000

√
ε

mσ2 . We have implemented the smooth
square-well potential in ESPResSo++, whose source code can be found
in Appendix B.

steinhardt order parameter The Steinhardt order parameter is
based on spherical harmonic functions Ylm, which is used to describe
the relative orientations of neighboring sites. The Steinhardt order pa-
rameter is regularly used in distinguishing different crystal structures
and liquids or the glass phase.12 First we compute qlm(i) for each
atom, which is the weighted average spherical harmonic functions
Ylm between atom i and its closest neighbors, by:

qlm(i) =
∑j σ(rij)Ylm(rij)
∑j σ(rij)

, (3.3)

in which the index l is an even integer greater than 0, and m is also
an integer that runs from −l to +l. The weigh σ(rij) is a switching
function that is computed as:

σ(rij) =
1− (rij−d0

r0
)
N

1− (rij−d0

r0
)
M

, (3.4)

where usually the exponent M = 2N. The switching function σ(rij)
ranges from 0 to 1. An example of the switching function σ(rij) is
shown in Figure 3.5.

The average vector q̄6m is averaged over all the atoms:

q̄lm =
∑N

i qlm(i)
N

. (3.5)

And finally Ql is computed as:

Ql = (
l

∑
m=−l

q̄∗lmq̄lm)
1/2

, (3.6)

where q̄∗lm is the conjugated vector of q̄lm.

44 extplumed and square-well polymer

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2

σ
(r

ij
)

rij

Figure 3.5: An example of the switching function σ(rij). In this example,
d0 = 0, r0 = 1.0, N = 12, M = 24. These parameters are used in the calculation
of Q6 of the single-chain smooth square-well polymer.

In this case l = 6 and Q6 is computed for the square-well polymer.
Another commonly used Steinhardt order parameter is Q4, which has
been used as CV in metadynamics simulations of ice nucleation.13

Q4 and Q6 ranges from 0 to 1. Generally speaking, a higher value
indicates a higher degree of crystallinity. In the case of the single-chain
square-well polymer, when Q6 > 0.20, the polymer is in the crystalline
state. Otherwise it is a random coil.

As discussed in Section 3.2.1, nonbonded contacts are a good indi-
cator of the phase of the single-chain polymer, which can be counted
through the potential energy by proxy, as the pairwise interaction is
only favorable in the very narrow well. When the potential energy
U < −179.5, we say the polymer is in the crystalline state.

well-tempered metadynamics The well-tempered metadynam-
ics is used in the biased sampling. The CV is a linear of combination
of the potential energy U and Q6:

s = 4.07430109214Q6 − 0.0187482044056U, (3.7)

which is obtained from Leitold & Dellago [10]. In our simulations
we have used these coefficients faithfully. We do not contend that the
results of the simulations are susceptible to changes to numbers after
a few decimal points. We consider the polymer is in the crystalline
state when s > 3.95.

The bias factor is chosen to be 30. The width σ of the Gaussian
kernel is set to 0.1. The initial height of the Gaussian kernel for each of
three simulations is set to equal to kBT for each temperature. Gaussian
kernels are deposited onto a grid to accelerate the computation of the
bias potential and the derived forces. We chose 1200 bins for s from
−1 to 20. A new Gaussian kernel is deposited every 2000 steps.

3.2 the single-chain smooth square-well polymer 45

upper wall When the polymer is in the coil state, there is no ef-
fective interaction between monomers in the majority range of the
separation. Nonboned interactions contribute very little to the poten-
tial energy U, the bias potential exerted by the well-metadynamics can
lead to nonphysical bond stretching. Therefore, we apply an upper
wall on the potential energy:

V(U) = K(U−U0)2, (3.8)

in whichU0 = 5ε, and K = 2.5. We find that with this upper wall we can
effectively prohibit the biased simulations from visiting nonphysical
states.

The plumed.dat file, which contains the commands and parame-
ters for the upper wall and well-tempered metadynamics, and the
Python script that sets up simulations with ESPResSo++ are include
in Appendix C.

3.2.3 Methods of Analysis

free energy surface We have performed the estimation of the
free energy surface for the biased simulation at T = 0.438 in three ways.
First, we have done so directly from the bias potential V(s, t) using
Equation 2.16. We have used the sum_hills utility provided by the
PLUMED library as a command line tool to perform the calculation.
With this method, the free energy estimation can only be done with
respect to the biased CV, namely the linear reaction coordinate s in
this case. The other two methods are the two reweighting methods
introduced in Section 2.3. We discarded the initial 20% of the data
of the biased simulations, as we have found that spurious features
emerged in the free energy surface due to higher fluctuations of the
bias potential at the beginning of the simulation. We have obtained
three one-dimensional free energy curves, F(s), F(Q6), and F(U). We
also have obtained the two-dimensional F(U,Q6), which will be used
to compute the entropy profile S(Q6) at T = 0.438.

In the reweighting procedures, we used the kernel density estima-
tion (KDE) to obtain an accurate and smooth curve. For each CV a
bandwidth parameter is used with KDE. Specifically, The bandwidths
are 0.1, 0.012 and 5 for the CV s, the Steinhardt order parameter Q6

and the potential energy U, respectively.

block analysis The standard error along the free energy surface
can be computed using the block analysis method.14 The entire simu-
lation is divided into five consecutive blocks of equal length so that
the unbiased probability distribution of the CV s can be estimated
independently in each block. We used both the residual bias reweight-
ing method and the last bias reweighting method so that we can
compare the convergence of the sampling from two the reweighting

46 extplumed and square-well polymer

methods. We used the histogram command with the discrete kernel
inside PLUMED to estimate the probability distribution. For each
method we computed standard errors (σp) of the probability distri-
bution. According to the rule of error propagation for a logarithmic
function:

y = a ln(bx), (3.9)

σ2y = (a
σx

x
)
2

. (3.10)

As the free energy surface F(s) = − 1
β

lnp(s), σF the standard error of
the free energy F is related to the probability distribution p by

σF =
1

β
× σp
p

. (3.11)

The standard errors of the free energy is a measure of the convergence
of the biased simulations.

free energy of crystallization The free energy of crystalliza-
tion ∆Gcry has also been computed. The probability distribution of
the linear reaction coordinate s is integrated in two regions, separated
by s = 3.95, below which is the crystalline region, and above is the ran-
dom coil region, to obtain the probability of crystalline state Pcry and
the probability of the coil state Pcoil. The free energy crystallization
∆Gcry = − 1

β
ln Pcry

Pcoil
. By computing the free energy of crystallization

along the time of the simulation, we can evaluate the convergence of
the sampling. We have computed ∆Gcry for all three temperatures so
that we can estimate the coexistence temperature for the single-chain
smooth square-well polymer.

entropy The entropy profile ST0
(Q6) at T = 0.438 is computed with

the aid of the two-dimensional free energy projection to (U,Q6). We
use the same method introduced by Michel et al.15 to do so. In their
metadynamics simulation study of the interaction of a water dimer, the
potential energy U is one of the collective variables that were biased
in the simulations, whereas in this work we have used reweighting to
obtain F(U,Q6). It highlights the flexibility of reweighting to obtain an
estimate of the free energy surface. First, we computed the potential
energy profile UT0

(Q6) at T0:

UT0
(Q6) = ∫

dUU exp(−βFT0
(U,Q6))

∫ dU exp(−βFT0
(U,Q6))

, (3.12)

and the free energy profile FT0
(Q6) is obtained from reweighting. And

we compute the entropy profile:

ST0
(Q6) = (UT0

(Q6)− FT0
(Q6))/T0. (3.13)

3.2 the single-chain smooth square-well polymer 47

Assuming that the potential energy profile UT0
(Q6) and entropy

profile ST0
(Q6) are insensitive to the change in temperature, one can

compute the free energy FT (Q6) at temperatures other than the one,
at which the biased simulation was performed, through the following
equation:

FT (Q6) = UT0
(Q6)− TST0

(Q6). (3.14)

As we did conduct enhanced sampling simulations of the single-chain
smooth square-well polymer at two other temperatures, we can assess
the feasibility of this method of estimating FES with simulations per-
formed at different temperatures, at least for the single-chain smooth
square-well polymer.

3.2.4 Results and Discussions

The time series of the linear reaction coordinate s, potential energy U,
and Steinhardt order parameter Q6 for the biased simulation at T =
0.438 are shown in Figure 3.6. There are about a dozen of transitions
between the two states, as illustrated by Figure 3.6a. The times series of
the potential energy U and Steinhardt order parameter Q6 also display
the same transitions between the crystalline state and the random coil
state, as evidenced by Figure 3.6b and Figure 3.6c. For the well-
tempered metadynamics simulations at the other two temperatures,
the time series are shown in Figure 3.7. Based on these time series we
conclude that enough number of transitions have occurred for us to
estimate the FES from these simulations.

The free energy profile with respect to s is first estimated directly
with the bias potential V(s, t), as shown in Figure 3.8. The free energy
profile at the random coil state at lower values of s is well converged
from the early stage of the simulation, while the free energy profile
of the crystalline state at high values of s is not yet converged with
large fluctuations between different time. Similarly, the height of free
energy separating the crystalline state and random coil state is neither
well converged, making it difficult to estimate the true value of the
height of the free energy barrier.

The reweighted free energy profile with respect to s is shown in
Figure 3.9. Both residual bias reweighting and last bias reweighting
have been employed. We show later that these reweighted free energy
profiles have much better convergence than that estimated from that
directly estimated from the bias potential. As already stated, we
have excluded the initial 20% of the trajectory from the reweighting
process. The two free energy profiles show a quantitative agreement
on the height of the free energy barrier (~20kBT) for transitions from
the random coil state, however, they differ in the depth of the local
minimum at the crystalline state. Previous studies10,11 have reported

48 extplumed and square-well polymer

−2
0

2

4

6

8

10

12

0 1 2 3 4

s

time [×105]

−400

−300

−200

−100

0

0 1 2 3 4

U

time [×105]

0

0.1

0.2

0.3

0.4

0.5

0.6

0 1 2 3 4

Q
6

time [×105]

Figure 3.6: The time series of the biased CV s, potential energy U, and
Steinhardt order parameter Q6 of the biased simulations at T = 0.438.

3.2 the single-chain smooth square-well polymer 49

T = 0.418 T = 0.458

−2
0

2

4

6

8

10

12

0 100 200 300 400

s

time [×105]
(a)

−2
0

2

4

6

8

10

12

0 100 200 300 400

s

time [×105]
(b)

−500
−400
−300
−200
−100

0

100

0 100 200 300 400

U

time [×105]
(c)

−500
−400
−300
−200
−100

0

100

0 100 200 300 400

U

time [×105]
(d)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 100 200 300 400

Q
6

time [×105]
(e)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 100 200 300 400

Q
6

time [×105]
(f)

Figure 3.7: The time series of the biased CV s, potential energy U, and Steinhardt order
parameter Q6 of the biased simulations at T = 0.418 and T = 0.458.

50 extplumed and square-well polymer

0

10

20

30

40

0 2 4 6 8 10

F
[k

B
T
]

s

20%
40%
60%
80%
100%

Figure 3.8: Free energy profiles F with respect to the linear reaction coor-
dinate s at five stages evenly spaced over the course of the well-tempered
metadynamics simulation. The free energy estimation was performed using
the relationship V(s, t) = −(1− 1

γ)F(s)+ c(t).

0

10

20

30

40

−1 1 3 5 7 9 11

F
[K

B
T
]

s

residual bias
last bias

Figure 3.9: Reweighted free energy surface with respect to the linear reac-
tion coordinate s with the last bias reweighting method and residual bias
reweighting method.

3.2 the single-chain smooth square-well polymer 51

the height the free energy barrier at T = 0.438 to be about 20kBT , in
agreement with our results.

We examine the convergence of the reweighted free energy surfaces
by their statistical standard errors. The standard errors for the two
reweighted probability distributions and free energy profiles about the
linear reaction coordinate s were computed using the block analysis
method, as shown in Figure 3.10. We have divided the simulation

last bias residual bias

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

p

s

(a)

0

0.4

0.8

1.2

1.6

0 2 4 6 8 10
p

s

(b)

0

10

20

30

40

−1 1 3 5 7 9 11

F
[k

B
T
]

s

(c)

0

10

20

30

40

−1 1 3 5 7 9 11

F
[k

B
T
]

s

(d)

Figure 3.10: The standard errors of the reweighted histograms and free energy profiles
of the linear reaction coordinate s at T = 0.438. (a) and (c) are the reweighted histogram
and free energy profile of s with last bias reweighting. (b) and (d) are the reweighted
histogram and free energy surface of s obtained with residual bias reweighting. The
reweighted histograms were computed by binning instead of the kernel density estimation
as previously.

without the initial 20% into five blocks of equal length to obtain inde-
pendent reweighted histograms with both residual bias reweighting
and last bias reweighting. In Figure 3.10, the average histograms
with their standard errors are shown instead of the five indepen-
dent histograms. The average free energy profiles were computed
with the average histograms, according to F = −1/β lnp. Although

52 extplumed and square-well polymer

in Figure 3.10d the standard errors at the portion of the free energy
barrier cannot be computed, as the probability distribution near the
barrier is close to zero. The figures convincingly demonstrate that
the reweighted free energy surfaces have converged to a quantitative
degree to our satisfaction.

To better visualize and understand the transition path between the
crystalline state and random coil state, we have obtained the two-
dimensional reweighted FES projected onto U and Q6 at T = 0.438 with
the two reweighting methods, and given the results in Figure 3.11. In

−450 −350 −250 −150 −50 50

U [ε]

0.0

0.1

0.3

0.4

0.6

Q
6

0

10

20

30

40

F[kBT]

(a) last bias

−450 −350 −250 −150 −50 50

U [ε]

0.0

0.1

0.3

0.4

0.6

Q
6

0

10

20

30

40

F[kBT]

(b) residual bias

Figure 3.11: The reweighted 2D free energy surface F(U,Q6) for the single-
chain smooth square-well polymer at T = 0.438, estimated with residual bias
reweighting and last bias reweighting.

these two-dimensional FESs, the crystalline state resides in the top left
corner of the FES, and the random coil state resides in bottom right
corner. Both reweighted free energy surfaces suggest that the linear
combination of U and Q6 is a decent choice for the collective variable,

3.2 the single-chain smooth square-well polymer 53

even though it seems that at the random coil state the fluctuation of
the potential energy U is greater than that of Q6. One can observe on
the FES of last bias reweighting (Figure 3.11a) a narrow faint metastable
state tightly below the crystalline state at about Q6 = 0.2 and U = −370,
which is invisible in the FES by residual bias reweighting. However,
we have not observed a structurally different crystalline form in this
narrow metastable state. Furthermore, we have found that excluding
more data of the initial stage of the simulations from the last bias
reweighting process does not eliminate this metastable state. We
conjecture that it is an artifact from the last bias reweighting process.
F(U,Q6) for the other two temperatures can be found in Figure 3.12.

−450 −350 −250 −150 −50 50

U [ε]

0.0

0.1

0.3

0.4

0.6

Q
6

0

10

20

30

40

F[kBT]

(a) T=0.418

−450 −350 −250 −150 −50 50

U [ε]

0.0

0.1

0.3

0.4

0.6

Q
6

0

10

20

30

40

F[kBT]

(b) T=0.458

Figure 3.12: F(U,Q6) at T=0.418 and T=0.458, estimated by last bias reweight-
ing.

The reweighted two-dimensional FESs are integrated along Stein-
hardt order parameter Q6 to obtain the potential energy profile U(Q6)
at T = 0.438. The entropy profile S(Q6) can also be computed for

54 extplumed and square-well polymer

T = 0.438 according to earlier introduced method. We show the results
in Figure 3.13. The left y axis indicates the values of F(Q6), and the
right y axis specifies the values of U(Q6) and −TS(Q6), which are
two orders of magnitude higher than that of F(Q6).

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5 0.6
−400

−200

0

200

400

600

F
[ε
]

U
,−
T
S
[ε
]

Q6

F
U
−TS

(a) last bias

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5 0.6
−400

−200

0

200

400

600

F
[ε
]

U
,−
T
S
[ε
]

Q6

F
U
−TS

(b) residual bias

Figure 3.13: Free energy profile F(Q6), the potential energy profile U(Q6),
and entropy −TS(Q6) with respect to Q6 at T = 0.438. As labeled, the left
axis is the scale of F in the unit of ε, and the right axis is the scale of U and
−TS also in the unit of ε.

Assuming that both entropy S(Q6) and the potential energy profile
U(Q6) are insensitive to temperature, we can estimate the free energy
surface F(Q6) at the other two temperatures. As we have conducted
WTMetaD simulations for the single-chain square-well polymer at two
other temperatures, we can compare the reweighted results with the
FES obtained from extrapolation. The results are shown in Figure 3.14.
As can be seen in Figure 3.14a, at the higher temperature T = 0.458,
extrapolation does a good job reproducing the free energy surface

3.2 the single-chain smooth square-well polymer 55

0

10

20

30

40

50

60

0 0.1 0.2 0.3 0.4 0.5 0.6

T = 0.458
F
[k

B
T
]

Q6

residual bias, extrapolated
residual bias, reweighted
last bias, extrapolated
last bias, reweighted

(a)

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4 0.5 0.6

T = 0.418

F
[k

B
T
]

Q6

(b)

Figure 3.14: Extrapolation of free energy profiles to T = 0.418 or 0.438 from
the potential energy profile U and entropy S obtained at T = 0.438.

at the random coil state, regardless that the data are obtained from
residual bias reweighting or last bias reweighting. However, it does
poorly at the free energy barrier and crystalline sate. The results of
extrapolation fails completely across the board for T = 0.418when com-
pared with the results of the both reweighting methods (Figure 3.14b).
The poor performance of the extrapolation method to estimate the FES

may be due to the large values of the potential energy profile U(Q6)
and entropy profile −TS(Q6) (Figure 3.13) and the relative low values
of F(Q6). Even though there is compensation between U(Q6) and
−TS(Q6), their statistical errors and fluctuations could overwhelm
F(Q6) and drown out the features of F(Q6), considering that they are
two orders of magnitude larger. However, we can not exclude that

56 extplumed and square-well polymer

it is unsound to assume that that the potential energy profile and
entropy profile are insensitive to temperature in the case of single-
chain smooth square-well. Nevertheless, the results of extrapolation
at T = 0.458 still gave a good estimation of F(Q6) at low values of Q6

at a fraction of the cost of simulations.
Leitold and Dellago have previously determined the coexistence

temperature for the 128-monomer smooth square-well polymer with
λ = 1.05.10 Here we estimate it by using the free energy of crystalliza-
tion. We have computed ∆Gcry for all three biased simulations at three
temperatures. The results for T = 0.438 are given in Figure 3.15a. And
the figures for the other two temperatures can be found in Figure 3.15b.

0

1.5

3

4.5

6

7.5

1× 105 2× 105 3× 105 4× 105

∆
G
[k

B
T
]

time

residual bias
last bias

(a) T = 0.438

34

34.5
35

35.5
36

−40
−30
−20

1× 105 2× 105 3× 105 4× 105

∆
G
[k

B
T
]

0.418

0.458

time

(b) T = 0.418 and 0.458

Figure 3.15: (a) Free energy of crystallization ∆Gcry at T = 0.438 obtained
through last bias reweighting and residual bias reweighting. (b) Free energy
of crystallization ∆Gcry at T = 0.418 and T = 0.458 using data from last bias
reweighting.

Figure 3.15a shows that the free energy of crystallization from
the last bias reweighting has converged much sooner, and that the
fluctuations of ∆Gcry are much lower than those from the residual
bias reweighting. Therefore, we have chosen to use the results of the
last bias reweighting to estimate the coexistence temperature. And

3.2 the single-chain smooth square-well polymer 57

the curves in Figure 3.15b are also from last bias reweighting. Instead
of using the final values of ∆Gcry at each temperature, we have
used the average values of ∆Gcry after initial large fluctuations in
our estimation of the coexistence temperature. The average values
of ∆Gcry and their standard errors are listed in Table 3.1. We have

T 0.418 0.438 0.458

⟨∆Gcry⟩ -10.0141 0.1865 15.88478

σG 0.01345 0.009204 0.009152

Table 3.1: The averages and standard errors of free energy of crystallization
∆Gcry in unit of ε.

plotted the average free energy of crystallization ⟨∆Gcry⟩ and a linear
fit by least-squares-regression in Figure 3.16, in which the unit of
⟨∆Gcry⟩ is ε rather than kBT as in other figures. The R2 value of
the linear regression is 0.985. The coexistence temperature is 0.435
with a standard error 0.002, based on the linearly fitted line. The
previously reported 0.438 fails narrowly outside one standard error
of 0.435. The R script used to compute the standard error for the
estimated coexistence temperature can be found in Listing C.3. The
standard errors of the free energy of crystallization σG (Table 3.1) is
too little compared to ⟨∆Gcry⟩, and thus not plotted in Figure 3.16.

−20

−10

0

10

20

0.42 0.435 0.45

Tco

⟨∆
G

c
r
y
⟩[
ε
]

T

Figure 3.16: The coexistence temperature Tco of the single-chain smooth
square-well polymer estimated using free energy of crystallization.

3.2.5 Conclusions

ESPResSo++, a MD simulation engine developed and maintained by
researchers from Max Planck Institute for Polymer Research and Uni-
versity of Mainz, is often used in soft matter simulations. PLUMED
2 is a software plugin that be used with MD engines concurrently
to calculate CVs and conducts enhanced sampling in the real time.
We have created an interface between the two software packages in
the form of an extension, which inherits from the MDIntegrator class

58 extplumed and square-well polymer

inside ESPResSo++. As an example, we have studied the first-order
phase transition of single-chain smooth square-well polymer with 128

monomers. A prototypical singe-chain square-well polymer has rigid
bonds and square-well interactions between nonbonded monomers.
Here, we model the rigid bonds with harmonic bonding interactions,
the square-well potential with a smooth square-well potential. In this
way we are able to study its phase transition with well-tempered meta-
dynamics simulations at three temperatures, including the previously
reported coexistence temperature, about 5% above it, and about 5%
below it. The 128-monomer single-chain smooth square-well polymer
has a random coil state and a crystalline state that are separated by
a significant free energy barrier. We have found in agreement with
previous studies that the height of the free energy at T = 0.438 is
approximately 20kBT . We also have obtained the free energy profiles
at the other two temperatures by extrapolation from the potential
energy profile and the entropy profile with respect to the Steinhardt
order parameter Q6 at T = 0.438. When compared with the reweighted
free energy profiles, the extrapolated free energy profiles performed
generally poorly at predicting the reweighted free energy profiles.
For the single-chain smooth square-well polymer enhanced sampling
simulations cannot be dispensed with by extrapolation. We have also
computed free energy of crystallization at the three temperatures,
based on which we have determined the coexistence temperature
Tco of the single-chain smooth square-well polymer to be 0.435, with
a standard error of 0.002. The previously reported 0.438 value is
narrowly outside one standard error of our result.

references

1. Lenz, O. Pmi - Parallel Method Invocation in Proceedings of the 8th
Python in Science Conference (Pasadena, CA USA, 2009), 48–50.

2. Yethiraj, A. & Hall, C. K. Generalized Flory Equations of State for
Square-well Chains. The Journal of Chemical Physics 95, 8494–8506

(Dec. 1, 1991).

3. Taylor, M. P., Paul, W. & Binder, K. All-or-None Proteinlike Fold-
ing Transition of a Flexible Homopolymer Chain. Physical Review
E 79 (May 7, 2009).

4. Taylor, M. P., Paul, W. & Binder, K. Phase Transitions of a Single
Polymer Chain: A Wang–Landau Simulation Study. The Journal
of Chemical Physics 131, 114907 (Sept. 21, 2009).

5. Taylor, M. P., Paul, W. & Binder, K. Two-State Protein-like Folding
of a Homopolymer Chain. Physics Procedia 4, 151–160 (2010).

3.2 the single-chain smooth square-well polymer 59

6. Taylor, M. P. & Lipson, J. E. G. Collapse of a Polymer Chain: A
Born–Green–Yvon Integral Equation Study. The Journal of Chemical
Physics 104, 4835–4841 (Mar. 22, 1996).

7. Růžička, Š., Quigley, D. & Allen, M. P. Folding Kinetics of a
Polymer. Physical Chemistry Chemical Physics 14, 6044–6053 (Apr. 4,
2012).

8. Vorselaars, B., Růžička, Š., Quigley, D. & Allen, M. P. Correction:
Folding Kinetics of a Polymer. Physical Chemistry Chemical Physics
19, 5674–5676 (Feb. 15, 2017).

9. Wicks, T. J., Wattis, J. A. D. & Graham, R. S. Monte–Carlo Simu-
lation of Crystallization in Single-Chain Square-Well Homopoly-
mers. POLYMER CRYSTALLIZATION 4, e10146 (Feb. 1, 2021).

10. Leitold, C. & Dellago, C. Folding Mechanism of a Polymer Chain
with Short-Range Attractions. The Journal of Chemical Physics 141,
134901 (Oct. 7, 2014).

11. Leitold, C., Lechner, W. & Dellago, C. A String Reaction Coor-
dinate for the Folding of a Polymer Chain. Journal of Physics:
Condensed Matter 27, 194126 (May 20, 2015).

12. Steinhardt, P. J., Nelson, D. R. & Ronchetti, M. Bond-Orientational
Order in Liquids and Glasses. Phys. Rev. B 28, 784–805 (July 15,
1983).

13. Quigley, D. & Rodger, P. M. Metadynamics Simulations of Ice
Nucleation and Growth. J. Chem. Phys. 128, 154518 (Apr. 18, 2008).

14. Bussi, G. & Tribello, G. A. Analyzing and Biasing Simulations with
PLUMED 2019. arXiv: 1812.08213 [cond-mat, physics:physics,

q-bio].

15. Michel, C., Laio, A. & Milet, A. Tracing the Entropy along a Reac-
tive Pathway: The Energy As a Generalized Reaction Coordinate.
Journal of Chemical Theory and Computation 5, 2193–2196 (Sept. 8,
2009).

https://arxiv.org/abs/1812.08213
https://arxiv.org/abs/1812.08213

4 VA R I AT I O N A L LY E N H A N C E D
S A M P L I N G W I T H
P E R M U TAT I O N A L LY I N VA R I A N T
C O L L E C T I V E VA R I A B L E S

In Chapter 2, we have presented two enhanced sampling methods,
well-tempered metadynamics and the variationally enhanced sampling
method. Both well-tempered metadynamics and the variationally
enhanced sampling method build a bias potential that is customized
to the underlying the free energy surface. The former does so through
periodic depositions of Gaussian kernels to the bias potential at prior
visited CV space, and the latter through iteratively minimizing the
functional Ω of the bias potential. In our study of the single-chain
smooth square-well polymer in Chapter 3, we have demonstrated a
real world application of well-tempered metadynamics.

In both methods the bias potential is applied to a low dimensional
CV space s = [s1, s2, . . . , sn], in which each CV s is a smooth differen-
tiable function of the configuration space r. Furthermore, collective
variables must also be able to discriminate among different metastable
states of a system and describe different transition pathways between
metastable states in a complex free energy landscape. It means that of-
ten multiple CVs are deployed in enhanced sampling. As the number
of CVs in the CV space s increases, quickly the efficiency of enhanced
sampling methods diminishes. For example, the rate of convergence
of the sampling in well-tempered metadynamics is inversely propor-
tional to the dimensionality of the CV space. Although it can pose a
challenge to enhanced sampling methods if the dimensionality of the
CV space is greater than two, it is sometimes inevitable to employ a
few CVs.

A collective variable can be roughly characterized as global collective
variables or local collective variables, based on whether it describes
the entire simulation box or only the local molecular environments. A
global collective variable could be the system density, or the system
potential energy. The system potential energy is the primary biased
CV in well-tempered ensemble simulations.1,2 Two examples of local
collective variables are the dihedral angles of alanine dipeptide, as
shown in Figure 4.1, which have been used in enhanced sampling
simulations with well-tempered dynamics3 and variationally enhanced
sampling4 to study the free energy landscape of its conformers in
vacuum. It is evident that the dihedral angles Φ and Ψ are not
equivalent.

61

62 ves with picvs

Figure 4.1: The molecular structure of alanine dipeptide and the two dihedral
angles Φ and Ψ are the two often biased local collective variables in enhanced
simulations.

In contrast, other types of local collective variables whose indices
can be arbitrarily exchanged without altering the system, are equiva-
lent CVs. The free energy surface projected onto any one of a group of
equivalent local collective variables should be the same as that onto
any of the others. It is not true in the case of the two dihedral angles
Ψ and Φ in alanine dipeptide for their different chemical environment.
We call these equivalent local collective variables permutationally in-
variant collective variables (PICVs). Examples of PICVs include averaged
local bond order parameter q̄l(i) (e. g., l = 4 or 6)5, CHILL+6, coordi-
nation numbers7, kernel CVs8–10, and the individual contributions to
SMAC11. We introduce the coordination number and the kernel CV
later in this chapter, and SMAC in Chapter 5.

Similar to the Steinhardt order parameters Ql (e. g., l = 4 or 6)
introduced in Chapter 3, the averaged local bond order parameter
q̄l(i) is also based spherical harmonic functions. We have used Q6 to
characterize the crystalline state of single-chain smooth square-well
polymer in the previous chapter. When Ql is computed, a global
average vector q̄lm is computed according to Equation 3.5. Whereas
when q̄l(i) is computed, a local average vector q̄lm(i) is computed as

q̄lm(i) =
1

Ñb(i)

Ñb(i)
∑
k=0

qlm(k), (4.1)

where Ñb(i) is the number of closest neighbors of atom i within a
cutoff distance. Then q̄l(i) for atom i can be computed according to

q̄l(i) =

¿
ÁÁÀ 4π

2l+ 1
l

∑
m=−l

∣q̄lm(i)∣2. (4.2)

The averaged bond order parameters can be computed for every
atom in a bulk sodium crystal in a BCC lattice as the one shown
in Figure 4.2. In fact, the averaged bond order parameters were

ves with picvs 63

developed for identifying various packing orders such as BCC, HCP
and FCC, of Lennard-Jones particles by the probability distributions of
q̄4(i) and q̄6(i).5 In contrast the global Steinhardt order parameters
Q4 and Q6 do not sufficiently distinguish the HCP and BCC packing.5

However, we do not use q̄4(i) and q̄6(i) for our simulations of bulk
sodium in this work due to their high computation cost. Nevertheless,
they are a good instrument to illustrate PICVs when contrasted with
the related global CV, the Steinhardt order parameters.

Figure 4.2: An illustration of permutationally invariant collective variables
on each atom in a block of sodium crystal. The superscript on sp indicates
the index of the Na atom. For each sodium one q̄l(i) can be computed, while
one Ql is computed for entire system.

Despite the usefulness of permutationally invariant collective vari-
ables, especially in distinguishing different crystalline polymorphs,
they present a unique challenge to enhanced sampling methods. First,
biasing all PICVs as separate CVs would mean a large dimension in
the CV space, which radically diminishes the sampling efficiency. Sec-
ondly, a pathway could be artificially imposed if equivalent collective
variables are treated as distinct ones. To properly leverage PICVs in
enhanced sampling simulations, a group of PICVs should be treated as
a family of the same collective variable, and each value is a member
of the same family. Specifically in the case of VES, we have adapted
its optimization process and the bias potential for PICVs and refer to
the adapted method as variationally enhanced sampling with per-
mutationally enhanced sampling method (VES-PICV). In the next few
sections, we give detailed accounts of our method, and then present
two examples of its application in simulation studies of seven particles
in a 2-dimensional (2D) space and bulk sodium. The phase transitions
and free energy surface of the seven Lennard-Jones particles in a 2D
space were first studied by Dellago and coworkers due to its com-
plex behaviors,12 and later by Valsson and Parrinello in their paper
that introduced VES4. We use VES-PICV to sample the landscape of

64 ves with picvs

this system. The melting temperature (Tm) of bulk sodium has been
reported to be ∼340 K and 360 K in two computer simulation studies
using the same EAM potential.13,14 In this work the free energy surface
of bulk sodium at 380.0K is sampled with VES-PICV multiple-walker
simulations. Finally we discuss the VES-PICV method in the context of
other parallel bias enhanced sampling methods.

4.1 a short review of ves

We first go over an overview of the variationally enhanced sampling
method to refresh our memory before we dove into VES-PICV. In VES a
functional Ω is defined of the bias potential V as:

Ω[V] = 1
β

log ∫ dse
−β[F(s)+V(s)]

∫ dse−βF(s) +∫ dsptg(s)V(s), (4.3)

where s is the CV space, and ptg(s) is the target distribution of s,
predefined by the user. The F(s) is the underlying free energy surface.
The functional Ω is a convex functional with a global minimum, at
which point the free energy surface F(s) and the bias potential V(s)
are related by V(s) = F(s) − 1/β logptg(s) +C. Furthermore, pV(s),
the biased distribution of s that is sampled by the VES simulation at
the global minimum of Ω is the same as the target distribution ptg(s).
To find the bias potential V(s) that minimizes Ω[V], we first express
it as V(s;α), a linear combination of a series of basis functions fk(s):

V(s;α) =∑
k

αkfk(s), (4.4)

in which the linear coefficients α = (α1,α2, . . . ,αk) are the variational
parameters that are updated iteratively by a variational method, e. g.,
the average stochastic gradient descent method. The gradient ∇Ω(α)
and Hessian HΩ(α) of the functional Ω(α) with respect to the vari-
ational parameters α are computed to update α. An element of the
gradient ∇Ω(α) is computed by

∂Ω(α)
∂αi

= − ⟨∂V(s;α)
∂αi

⟩
V(α)

+ ⟨∂V(s;α)
∂αi

⟩
ptg

. (4.5)

An element of the Hessian HΩ(α) can be computed by

∂2Ω(α)
∂αi∂αj

= βCov [∂V(s;α)
∂αj

,
∂V(s;α)
∂αi

]
V(α)

− ⟨∂
2V(s;α)
∂αj∂αi

⟩
V(α)

+ ⟨∂
2V(s;α)
∂αj∂αi

⟩
ptg

.
(4.6)

In the case of average stochastic gradient descent optimizer, the coeffi-
cients are updated by

α(n+1) = α(n) −µ [∇Ω(ᾱ(n))+HΩ(ᾱ(n))[α(n) − ᾱ(n)]] , (4.7)

4.2 the ves-picv method 65

in which µ is the step size of the update, a parameter set by the user,
in strides of time steps.

4.2 the ves-picv method

Now we introduce the adaptation of VES for permutationally invariant
collective variables. First, we present a change to the notations. So far
we have used the bold s = [s1, s2, . . . , sn] to denote an n-dimensional
CV space that consist of multiple distinct CVs. The bias potential
V(s;α) is defined over the multidimensional CV space and expressed
as V(s;α) = ∑kαkfk(s), where the subscript k indicates the number of
basis functions. To better differentiate them from the multidimensional
CV space s, a family of PICVs is written as the small s. A member of
a PICV family is written as sp with the superscript p corresponding
to the index of the relevant atom or the molecule. The bias potential
V(s;α) is now written as a sum of the unit bias potential v(s;α):

V(s;α) =
N

∑
p

v(sp;α), (4.8)

v(s;α) =∑
k

αkfk(s). (4.9)

V(s;α) is the applied bias in the VES-PICV simulations, and the unit
bias potential v(s;α) is the amount of bias on each member of a
family of PICVs. In other words, every member of a family of PICVs

is concurrently biased in a VES-PICV simulations. And the variational
parameters α are the same for all members of a family of PICVs.

The optimization process of updating the variational parameters α

inevitably also has to change due to the PICVs. First of all, we no longer
compute the gradient ∇Ω(α) and Hessian HΩ(α) as presented for
Equation 4.7. In their stead, we compute g(α) and h(α) with the unit
bias potential v(s;α):

gi(α) = − ⟨
∂v(s;α)
∂αi

⟩
V(α)

+ ⟨∂v(s;α)
∂αi

⟩
ptg

, (4.10)

hij(α) = βCov [∂v(s;α)
∂αi

,
∂v(s;α)
∂αj

]
V(α)

− ⟨∂
2v(s;α)
∂αj∂αi

⟩
V(α)

+ ⟨∂
2v(s;α)
∂αj∂αi

⟩
ptg

.
(4.11)

One can see that they have similar forms to the gradient ∇Ω[α] and
Hessian HΩ(α). Plugging Equation 4.9 into the two equations above,
g(α) and h(α) can be simplified into

gi(α) = −⟨fi(s)⟩V(α) + ⟨fi(s)⟩ptg , (4.12)

66 ves with picvs

and

hij(α) = βCov[fj(s), fi(s)]V(α). (4.13)

When computing Equation 4.12 and Equation 4.13, all members of a
family of PICVs accumulated during a stride between updates are used.
Now the average stochastic gradient descent optimizer changes to

α(n+1) = α(n) −µ [g(ᾱ(n))+h(α)(ᾱ(n))[α(n) − ᾱ(n)]] . (4.14)

One configuration from a VES-PICV simulation provide all members
of a family of PICV for the optimizer, wheres in a regular VES simulation
one configuration supplies a single data point for a collective variable.
From Equations 4.10-4.14, it is clear that the total bias is only used
for the bias, while the unit bias potential is used in the optimization
process. It results in a breakdown of the relationship between the
underlying free energy surface F(s) and the bias V(s) at the global
minimum of Ω, which has been useful to test the convergence of
VES simulations. However, it is still feasible to gain insight into the
convergence of the simulations by examining the convergence of the
unit bias potential v(s;α). The free energy landscape of the system,
therefore, has to be estimated through reweighting in a VES-PICV

simulation.
The VES-PICV method is currently only available in an in-house

customized implementation of PLUMED 2. The future release and
upstreaming of our implementation are intended.

4.3 simulations and methods

4.3.1 Seven Lennard-Jones Particles in Two-Dimensional Space

The seven Lennard-Jones particles are modeled by the 12-6 style
Lennard-Jones potential in a two-dimensional space, as seen in Equa-
tion 4.15 where ε and σ are equal to 1 and in natural units:

ULJ(r) = 4ε [(
σ

r
)
12

− (σ
r
)
6

] , (4.15)

in which ε and σ are equal to 1, and r is the distance between two
particles. We employed a cutoff distance in calculation of the Lennard-
Jones potential, which is 2.5σ. The mass m of a particle is 1. The time
step is 0.002

√
ε

mσ2 . The temperature is 0.2kBT/ε, which is enforced
by the Langevin thermostat with a friction coefficient equal to 1. All
simulations of this system were performed with the simple MD engine
as part of the PLUMED package. The simulations have been run for a
total of 109 steps for both the well-tempered metadynamics simulation
and the VES-PICV simulation. An illustration of seven Lennard-Jones
particles in two-dimensional space can be found in the margin.

4.3 simulations and methods 67

coordination numbers. The pairwise coordination number sij
between particles i and j is calculated using the following equation7:

sij =
1− (rij

d0
)
8

1− (rij
d0
)
16

, (4.16)

where parameters d0 = 1.0, and rij is the pairwise distance between
particles i and j. The coordination number of particle i, si, is the sum
of all the pairwise coordination numbers sij involving particle i, i. e.,
si = ∑ sij. The function form of sij ensures the differentiability of the
coordination number si as a collective variable.

The second moment (µ22) and third moment (µ33) of the coordination
numbers for the seven particles is computed using the following
equation:

µmm =
1

7

7

∑
i=1
(si − s̄)m. (4.17)

They are the variance and skewness of the coordination numbers si,
respectively, in statistical terms.

well-tempered metadynamics In the well-tempered metadynam-
ics simulation of the seven particles, the biased CVs are the second
moment of the coordination numbers (µ22) and the third moment (µ33).
The bias factor γ was 20. The height of the bias potential was 0.02ε,
one tenth of the thermal energy. The stride of depositing Gaussian
kernels was 500 time steps, and the width σ for µ22 and µ33 in the
Gaussian kernel was 0.02 and 0.02, respectively. To speed up the
computation of the bias potential, Gaussian kernels were deposited
on a two-dimensional grid with 5600 bins in the dimension of µ22 and
2800 bins in the dimension of µ33. The range for the grid in µ22 is
[0.1,1.5], and [−0.9,1.9] for µ33.

The estimation of free energy surface was performed through the
two methods introduced in Section 2.3, namely directly through the
bias potential and residual bias reweighting. In the residual reweight-
ing, the kernel density estimation has been used with the bandwidths
for µ22 and µ33 are 0.012 and 0.015, respectively.

ves-picv In the VES-PICV simulations, the PICVs were the coordina-
tion numbers si. Legendre functions up to 20

th order were selected as
the basis functions. The stride between updates of the bias potential
was 500 time steps. The average stochastic gradient descent optimizer
was employed in the update of the bias potentials. The step size µ for
update was 0.1. The well-tempered distribution is used as the target
distribution, and the bias factor γ for the well-tempered distribution
is 3. The well-tempered distribution was update every 500 iterations,
i. e., 250000 time steps. As stated previously, the free energy surface

68 ves with picvs

from VES-PICV simulations can only be estimated through reweighting.
The bandwidths for µ22 and µ33 in kernel density estimation were the
same as those for the well-tempered metadynamics. The plumed.dat
file for the VES-PICV simulation is in Listing D.1.

4.3.2 Bulk Sodium

simulation details Bulk sodium was simulated using the embed
atom potential developed by Wilson and coworkers.13 We have intro-
duced the embed atom model in Section 1.3.3, including the function
form and an abridged table of the EAM potential for Na. The MD

engine for these simulations was LAMMPS.15 The velocity-Verlet inte-
grator was used to propagate the dynamics with a time step of 2 fs.
The simulations were carried out in a canonical ensemble at 380.0 K
and 1.0 bar. The thermostat of choice was the velocity-rescaling
thermostat16 with the relaxation parameter τ equal to 100 fs. The
three dimensions were coupled in the Nosé-Hoover barostat17 and its
damping constant was 2 ps. There were a total number of 250 sodium
atoms in a periodic cubic box, with a dimension around 2.14 nm. The
total simulation time was 22 ns for each walker, and 176 ns in total for
the eight walkers. The crystalline sodium had a body-centered cubic
unit cell. The cell constant determined for the Wilson’s EAM potential
for sodium was 4.29 Å.13

(a) A perfect BCC crystal (b) A liquid configuration

Figure 4.3: The liquid phase and crystalline phase of bulk sodium.

kernel cv The kernel CVs were the biased PICVs in the simulations
of sodium. They were developed for studies such as crystallization
and solid-solid phase transitions by comparing local similarities be-
tween a local environment of the system of interest and a reference
template8–10 The similarity of two local environments is defined as the
inner product of two local densities ρχ and ρχ0

,

kχ0
(ρχ,ρχ0

) = ∫ ρχ(r)ρχ0
(r)dr, (4.18)

4.3 simulations and methods 69

in which the subscript χ and χ0 refer to the environment of the system
of interest and the reference template, respectively. And ρχ(r) is
defined as

ρχ(r) =∑
i∈χ

exp(− ∣ri − r∣
2

2σ2
) , (4.19)

where ri is the relative vector of atom i to the center atom, and σ
is the width of the Gaussian kernel. The density of the reference
template ρχ0

(r) is computed similarly. After plugging Equation 4.19

into Equation 4.18, and then taking its weighed average, we obtain the
kernel CV for the center atom as

k̃χ0
(χ) =

∑i∈χ∑j∈χ0
s(ri) exp(− ∣ri−r0

j ∣2

4σ2)

∑i∈χ s(ri)
, (4.20)

where the weight s(ri) is a switching function computed as

s(ri) =
1− (ri

r0
)
12

1− (ri
r0
)
24

, (4.21)

where ri is the norm of vector ri, and r0 is equal to 0.5 nm. We have
chosen σ = 0.65 nm, the same as in reference [10], in which k̃χ0

(χ) is
an average over the number of neighbor atoms rather than a weighted
average. Fourteen nearest neighbors were used in calculation of
k̃χ0
(χ) for our simulations of bulk sodium, compared to the reference

template as shown in Figure 4.4a. The histograms of k̃χ0
(χ) for

sodium atoms in both liquid state and the solid state at 380.0 K have
been computed and given in Figure 4.4b. The figure shows a modest
overlap of the two histograms of the two states. It suggests that one
can use the kernel CV as the PICV for our simulations of crystallization
of sodium.

Sodium atoms with k̃χ0
(χ) ≥ 0.45 are categorized as in the solid

state. We count the number of solid atoms ns by

ns =
N

∑
i

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1−
1− (k̃χ0

(χi)
0.45)

12

1− (k̃χ0
(χi)

0.45)
24

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, (4.22)

and N is the total number of atoms in the system. The ns is a global
CV to characterize the overall degree of crystallinity of the system.

Q6 Another global CV used to characterize the degree of crys-
tallinity of the system is the Steinhardt order parameter Q6. One can
find the formulas to compute it in Section 3.2.2. The parameters in
use were N = 12, M = 24, r0 = 0.5 nm, and d0 = 0.

70 ves with picvs

(a)

0

3

6

9

0.1 0.25 0.4 0.55 0.7 0.85Pr
ob

ab
ili

ty
di

st
ri

bu
ti

on

k̃χ0(χ)

liquid
solid

(b)

Figure 4.4: (a) The reference system for bulk sodium with the fourteen
closest neighbors in pink and the center atom in blue. The bond in the
figure illustrates distance between the atoms, and are not real bonds. (b)
The sampled probability distribution of the kernel CV k̃χ0

(χ) of the solid
form and the liquid form of sodium at 380 K and 1 bar sampled over two
brute-force simulations for 20 ns. The slight difference between (Figure 4.4b)
and Figure 1b in reference [10] is mainly attributed to the two different ways
of taking the average when calculating k̃χ0

(χ), and in minor part to the 5 K
difference in temperature.

4.4 results 71

ves-picv In the multiple-walker VES-PICV simulations of bulk sodi-
um, the ADAM optimizer has been used instead of the average stochas-
tic gradient descent optimizer, which is commonly used with VES.
Readers can find out more about the details of the implementation of
the ADAM optimizer in the VES module of PLUMED 2 in Pampel &
Valsson [18]. The choice of the ADAM optimizer is due to its superior
performance of converging the bias potential to a stable value in this
case. Later we show that the bias potential indeed rapidly converges
in the simulations. We have found that the quality and speed of the
convergence of the bias potential both affect the quality of the free
energy estimation of reweighting. Legendre functions up to the 20

th

order from 0.1 to 0.85 are chosen as the basis functions. The target dis-
tribution is the well-tempered distribution with the bias factor γ = 1.2.
The stride between updates of the bias potential is 500 time steps, and
the step size for the update is 0.0005. The frequency of updating the
well-tempered distribution is 500 iterations or 250000 time steps. The
plumed.dat for the multiple-walker VES-PICV simulations of bulk
sodium can found in Listing D.2.

The free energy surface is estimated by reweighting with kernel
density estimation. The free energy surface from the multiple-walker
simulations are reweighted excluding the initial 4 ns of the simulations
as the large fluctuations in the bias potential at the beginning of
the simulations degrade the quality of free energy estimation by
reweighting.

4.4 results

4.4.1 Seven Lennard-Jones Particles

The stable state and three metastable states of the seven particles are
shown in Figure 4.5, and their locations in the free energy landscape
with respect to the second moment (µ22) and the third moment (µ33) of
the coordination numbers (s) are given in Figure 4.6.

Just to remind the readers, both a well-tempered metadynamics
simulation and a VES-PICV simulation have been performed on the
seven particles in a 2D space. In the WTMetaD simulation the biased CV

space s is [µ22,µ33]. In the VES-PICV simulation the biased CVs are the
coordination numbers (s), however, we have estimated the FES with
respect to µ22 and µ33 by reweighting. In Figure 4.6a the estimation of
FES is performed with V(s, t) = 1−γ

γ
F(s)+ c(t), while in Figure 4.6b it

is obtained with the residual bias reweighting method19 developed by
Tiwary and Parrinello. It is clear that these two free energy surfaces
do not agree with each other quantitatively, although qualitatively the
locations of the stable state and metastable states are in agreement. As
the convergence of the well-tempered metadynamics is hard to reach

72 ves with picvs

(a) (b)

(c) (d)

Figure 4.5: The most stable configuration (a) and the three metastable config-
urations (b, c, d) of seven Lennard-Jones particles in two dimensions.

even with the current computing power and advanced algorithms,
reweighting is generally preferred to estimate the FES. For the VES-PICV

simulations, the free energy surface with respect to µ22 and µ33 has been
obtained through reweighting, although they were not biased in the
simulations. As shown in Figure 4.6c and Figure 4.6b, the reweighed
free energy surface from the VES-PICV simulations displays an almost
quantitative agreement with the reweighted FES from WTMetaD sim-
ulations. The four metastable states present in the FES from WTMetaD

simulations are all present in the reweighted FES from VES-PICV simu-
lations. To best illustrate the agreement of the reweighed FES between
WTMetaD and VES-PICV simulations, the free energy profiles projected
to µ22 and µ33 are shown in Figure 4.7.

The assumption of VES-PICV is that in the long time regime the free
energy surface reweighted to each of the PICVs is equivalent. However,
it is unclear whether it is necessary to achieve for a well working VES-
PICV simulation. In the current case, the sampled distributions of the
coordination numbers have tightly converged, as demonstrated by
Figure 4.8a, which are histograms of the coordination numbers of each
particle of entire duration of the VES-PICV simulation. The unit bias
potential v(s;α), as shown in Figure 4.8b, has very rapidly converged
as well, which is important in ensuring the quality of reweighted FES.
Certainly the converged sampled distributions of the PICVs could only
help the convergence of the unit bias potential v(s;α).

4.4 results 73

0.3 0.5 0.7 0.9 1.1 1.3
µ22

-0.4

0.0

0.4

0.8

1.2

µ
3 3

0.0

0.8

1.6
F[ε]

(a) WTMetaD

A

C B

D

0.3 0.5 0.7 0.9 1.1 1.3
µ22

-0.4

0.0

0.4

0.8

1.2

µ
3 3

0.0

0.8

1.6
F[ε]

(b) WTMetaD

0.3 0.5 0.7 0.9 1.1 1.3
µ22

-0.4

0.0

0.4

0.8

1.2

µ
3 3

0.0

0.8

1.6
F[ε]

(c) VES-PICV

Figure 4.6: The free energy surface F(µ22,µ33) of seven Lennard-Jones parti-
cles in two dimensions, which is obtained through the bias potential (a) of
well-tempered metadynamics, through reweighting of well-tempered meta-
dynamics trajectories (b), through VES-PICV (c). In (b) the labeled regions
correspond to the figures in Figure 4.5

74 ves with picvs

0

0.5

1

1.5

2

2.5

3

0.4 0.6 0.8 1 1.2

F
[ε
]

µ22

VES-PICV
WTMetaD

(a)

0

1

2

3

4

−0.4 0 0.4 0.8 1.2

F
[ε
]

µ33

VES-PICV
WTMetaD

(b)

Figure 4.7: Reweighted free energy profiles with respect to µ22 and µ33 by well-tempered
metadynamics and VES-PICV simulations.

0

0.15

0.3

0.45

0.6

0 1 2 3 4 5 6

Sa
m

pl
ed

D
is

tr
ib

ut
io

n

Coordination Numbers

CN1

CN2

CN3

CN4

CN5

CN6

CN7

(a)

-2

-1

0

1

1 2 3 4 5 6

v
(s

;α
)[
ε
]

Coordination Numbers

20%
40%
60%
80%

100%

(b)

Figure 4.8: (a) The sampled distribution of coordination numbers of each particle. (b) The
unit bias potential v(s;α) in the progression of VES-PICV simulations.

4.4 results 75

4.4.2 Bulk Sodium

Now we look at the second example in the phase transition of the
bulk sodium. The phase transition between the liquid phase and
the solid phase, which has a body-centered cubic packing is a first-
order phase transition. A high free energy barrier that separates the
two phases makes accurately determining the Tm for bulk sodium by
simulations a nontrivial task. We have found by way of brute force
simulations, even at 380 K, 14 − 40 K above the previously reported
melting temperatures Tm, phase transitions do not spontaneously
occur in 1 µs long simulation, as shown in Figure 4.9. It shows the
time series of the Steinhardt order parameter Q6 and the number of
atoms in the solid phase ns of the two brute force simulations starting
from either a solid phase or a liquid phase. It is evident that the
systems do not cross over to the other state.

0

80

160

240

0 200 400 600 800 1000

n
s

Time [ns]

solid
liquid

(a)

0

0.1

0.2

0.3

0 200 400 600 800 1000

Q
6

Time [ns]

solid
liquid

(b)

Figure 4.9: The times series of CV ns (a) and Q6 (b) of bulk sodium starting
from the solid phase and liquid phase, respectively. The initial phases of
sodium are labeled with the legends in the figures. Both CVs indicate no
phase transition in the brute-force simulations.

76 ves with picvs

Contrary to the brute force simulations, the multiple-walker VES-
PICV simulations at T = 380 K have driven rapid transitions in all
eight walkers between the liquid phase and solid phase. To illustrate
these transitions, we show in Figure 4.10 the time series of the biased
kernel CV k̃χ0

(χ) of a typical sodium atom of the first walker during
the initial 10 ns simulation, and the time series of the number of
solid atoms ns and the Steinhardt order parameter Q6 of the first
walker during the entire simulation. The other walkers display similar
diffusive dynamics between the two states. The time series of ns and
Q6 of the other seven walkers can be found in Figure D.1.

In the VES-PICV simulations of the seven particles in a 2D space,
the sampled distributions of the coordination numbers of the seven
particles have tightly converged. In the case of the multiple-walker
simulations of the bulk sodium, it is impractical to present the sam-
pled distribution of all atoms. Instead, we have arbitrarily chosen
one sodium atom from each walker and given their sampled distribu-
tions of the biased kernel CV k̃χ0

(χ) in Figure 4.11. Even though all
eight atoms have sampled the both liquid state and solid state, their
distributions have not reached full convergence.

The unit bias potential v(k̃χ0
;α), as the result of the optimization

process of the VES-PICV simulations, has however converged to a stable
value very early on in the simulations, as shown in Figure 4.12. The
convergence is rather swift considering the short time span of the
simulations. It is made possible by the rapid transitions between the
two phases of bulk sodium in the multiple-walker simulations. The yet
to be fully converged sampled distributions of the kernel CVs k̃χ0

(χ)
seem to have not been detrimental to the convergence of the unit bias
potential, suggesting that sufficient sampling can be achieved without
reaching full convergence of the biased PICVs. It is also supported by
the reweighted free energy surfaces.

The free energy surface estimated using reweighting is shown in
Figure 4.13. The FES of the eight walkers show excellent agreement
between them, and the standard errors among them follows tightly the
mean free energy surface, even though the sampled distribution of the
kernel CVs have not reached full convergence. The free energy barrier
between the solid state at Q6 = 0.29 and the liquid state at Q6 = 0.04
reaches about 60 kJ/mol. The figure also shows that Fliquid is lower
than Fsolid, indicating a relative more stable liquid state compared to
the solid state, and a melting temperature Tm below 380K.

4.4 results 77

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

k̃
χ
0
(χ
)

Time [ns]
(a)

0

50

100

150

200

250

0 5 10 15 20

n
s

Time [ns]
(b)

0

0.15

0.3

0.45

0 5 10 15 20

Q
6

Time [ns]
(c)

Figure 4.10: The time series of (a) the kernel CV k̃χ0
(χ) of a typical Na atom

of the first walker during first 10 ns of the simulation, (b) the number of
solid atoms ns of the first walker , and (c) Q6 of the first walker of the
multiple-walker simulations of sodium. The kernel CV k̃χ0

(χ) was directly
biased in the simulations, it covers the entire range of values of the solid
state and liquid state. We show the first 10 ns of k̃χ0

(χ) to have a better
visualization.

78 ves with picvs

0.0 0.2 0.4 0.6 0.8
k̃χ0
(χ)

0.0

0.5

1.0

1.5

2.0

2.5

Sa
m

pl
ed

D
is

tr
ib

ut
io

n walker 1

walker 2

walker 3

walker 4

walker 5

walker 6

walker 7

walker 8

Figure 4.11: The sampled distributions of kernel CV k̃χ0
(χ) on an arbitrarily

chosen sodium from each of the eight walkers.

-4

-3

-2

-1

0

1

0 0.2 0.4 0.6 0.8

v
(k̃

χ
0
;α
)[
k
J/
m
o
l]

k̃χ0
(χ)

4 ns
7 ns

10 ns
13 ns

16 ns
18 ns

20 ns
22 ns

Figure 4.12: The unit bias potential v(k̃χ0
;α) at different time of VES-PICV

simulations.

4.4 results 79

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4

F
[k
J/
m
o
l]

Q6

w1

w2

w3

w4

w5

w6

w7

w8

(a)

0

20

40

60

80

100

0 0.1 0.2 0.3 0.4

F
[k
J/
m
o
l]

Q6

mean
3σ

(b)

Figure 4.13: (a) The free energy F(Q6) for all eight walkers in VES-PICV
simulations through reweighting. The minimum on the left corresponds to
the liquid state, and the right well corresponds to the solid state. (b) The
mean free energy surface of the eight walkers and the blue shaded areas are
within three times the standard errors of the mean.

80 ves with picvs

4.5 discussions

We have shown that by taking advantage of the local permutation
invariance collective variables, new opportunities are opened for ap-
plications of enhanced sampling in computer simulations of phase
transitions of atomic crystals, especially in cases where global col-
lective variables are not feasible. VES-PICV is based on the simple
assumption that in the long time limit the free energy profiles pro-
jected to a family of PICVs are the same.

Treating PICVs as a family of the same CV has profound impacts on
the scheme of VES. In an optimization step, each step of simulations
contributes all members of PICVs to the calculations of g(α) and h(α).
Therefore, a large of amount of statistics is accumulated between
optimization steps to optimize the unit bias potential v(s;α). Second,
in the VES-PICV scheme, the relationship V(s) = F(s)− 1/β logptg(s)+
C no longer holds true. As a result, the free energy surface can only
be estimated by reweighting. Despite this change, we have shown in
the two examples that the unit bias potential converged very early
during the VES-PICV simulations, which gives us confidence in the
reweighted free energy surfaces.

Although we have seen in the two applications of the VES-PICV
method that the unit bias potentials have quickly converged to a stable
form, the sampled distributions of the PICVs have only converged
for the coordination numbers in the case of the seven Lennard-Jones
particles. The sampled distributions of the kernel CVs have not fully
converged in the VES-PICV simulations of the bulk sodium, even
though the sampled distributions show that both the liquid state and
the solid state have been visited by the Na atoms. The reweighted free
energy surface from VES-PICV simulations of the seven Lennard-Jones
has an excellent agreement with the well-tempered metadynamics
simulation. The reweighted free energy profiles of the eight walkers of
the bulk sodium fall within a relatively tight range, evidenced by their
low standard errors. The yet-to-converge sampled distributions of the
kernel CVs seem to have not degraded the quality of the reweighted
free energy profiles.

VES-PICV is a versatile method that can be further extended. Even
though in the two cases reported here only one family of PICVs has
been used in each case, one can bias more than one family of PICVs in
the simulations if it is needed. It is also possible to simultaneously
bias PICVs and global CVs in one simulation. One such scenario could
be a simulation of a system comprised of multiple copies of the
same molecule, where a phase change that is manifested in a global
reordering of the molecules that is accompanied by local internal
conformation changes in such molecules.

Finally, we would like to note that the method dubbed parallel bias
metadynamics with partitioned families can also use PICVs as biased

4.5 discussions 81

collective variables,20 however, it does so by biasing a random member
of the PICV every step instead of biasing all members of PICVs.

references

1. Bonomi, M. & Parrinello, M. Enhanced Sampling in the Well-
Tempered Ensemble. Phys. Rev. Lett. 104, 190601 (May 10, 2010).

2. Valsson, O. & Parrinello, M. Thermodynamical Description of
a Quasi-First-Order Phase Transition from the Well-Tempered
Ensemble. Journal of Chemical Theory and Computation 9, 5267–5276

(Dec. 10, 2013).

3. Barducci, A., Bussi, G. & Parrinello, M. Well-Tempered Meta-
dynamics: A Smoothly Converging and Tunable Free-Energy
Method. Physical Review Letters 100, 020603 (Jan. 18, 2008).

4. Valsson, O. & Parrinello, M. Variational Approach to Enhanced
Sampling and Free Energy Calculations. Physical Review Letters
113, 090601 (Aug. 27, 2014).

5. Lechner, W. & Dellago, C. Accurate Determination of Crystal
Structures Based on Averaged Local Bond Order Parameters. The
Journal of Chemical Physics 129, 114707 (Sept. 17, 2008).

6. Nguyen, A. H. & Molinero, V. Identification of Clathrate Hy-
drates, Hexagonal Ice, Cubic Ice, and Liquid Water in Simula-
tions: The CHILL+ Algorithm. J. Phys. Chem. B 119, 9369–9376

(July 23, 2015).

7. White, A. D. & Voth, G. A. Efficient and Minimal Method to Bias
Molecular Simulations with Experimental Data. J. Chem. Theory
Comput. 10, 3023–3030 (Aug. 12, 2014).

8. Bartók, A. P., Kondor, R. & Csányi, G. On Representing Chemical
Environments. Physical Review B 87 (May 28, 2013).

9. Martelli, F., Ko, H.-Y., Oğuz, E. C. & Car, R. Local-Order Metric for
Condensed-Phase Environments. Phys. Rev. B 97, 064105 (Feb. 12,
2018).

10. Piaggi, P. M. & Parrinello, M. Calculation of Phase Diagrams in
the Multithermal-Multibaric Ensemble. J. Chem. Phys. 150, 244119

(June 28, 2019).

11. Giberti, F., Salvalaglio, M., Mazzotti, M. & Parrinello, M. Insight
into the Nucleation of Urea Crystals from the Melt. Chemical
Engineering Science 121, 51–59 (Jan. 2015).

12. Dellago, C., Bolhuis, P. G. & Chandler, D. Efficient Transition Path
Sampling: Application to Lennard-Jones Cluster Rearrangements.
J. Chem. Phys. 108, 9236–9245 (June 1, 1998).

82 ves with picvs

13. Wilson, S. R., Gunawardana, K. G. S. H. & Mendelev, M. I. Solid-
Liquid Interface Free Energies of Pure Bcc Metals and B2 Phases.
The Journal of Chemical Physics 142, 134705 (Apr. 7, 2015).

14. Piaggi, P. M., Valsson, O. & Parrinello, M. Enhancing Entropy
and Enthalpy Fluctuations to Drive Crystallization in Atomistic
Simulations. Phys. Rev. Lett. 119, 015701 (July 6, 2017).

15. Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular
Dynamics. Journal of Computational Physics 117, 1–19 (Mar. 1, 1995).

16. Bussi, G., Donadio, D. & Parrinello, M. Canonical Sampling
through Velocity Rescaling. The Journal of Chemical Physics 126,
014101 (Jan. 3, 2007).

17. Tuckerman, M. E., Alejandre, J., López-Rendón, R., Jochim, A. L.
& Martyna, G. J. A Liouville-operator Derived Measure-Preserving
Integrator for Molecular Dynamics Simulations in the Isother-
mal–Isobaric Ensemble. Journal of Physics A: Mathematical and
General 39, 5629–5651 (Apr. 24, 2006).

18. Pampel, B. & Valsson, O. Improving the Efficiency of Variationally
Enhanced Sampling with Wavelet-Based Bias Potentials Feb. 27, 2022.
arXiv: 2202.13459 [cond-mat, physics:physics].

19. Tiwary, P. & Parrinello, M. A Time-Independent Free Energy
Estimator for Metadynamics. The Journal of Physical Chemistry B
119, 736–742 (Jan. 22, 2015).

20. Prakash, A., Fu, C. D., Bonomi, M. & Pfaendtner, J. Biasing
Smarter, Not Harder, by Partitioning Collective Variables into
Families in Parallel Bias Metadynamics. J. Chem. Theory Comput.
14, 4985–4990 (Oct. 9, 2018).

https://arxiv.org/abs/2202.13459

5 C R Y S TA L L I Z AT I O N O F I C E A N D
U R E A

In this chapter we discuss application of VES-PICV in atomistic sim-
ulations of crystallization of ice and urea. Although our efforts are
ultimately unsuccessful, we summarize our work and findings here.

5.1 ice

Understanding the growth and melting of ice has a direct impact on
our understanding of the weather and climate. For example, hetero-
geneous ice nucleation mediated by biogenic aerosols or soot plays
an important role in cloud formation.1–3 In view of climate change,
better understanding the melting rate of ice in Greenland is crucial
for accurate estimation of the rate of sea level rise. Ice nucleation,
especially homogeneous ice nucleation, is still a hard problem for
atomistic computer simulations to tackle without resolving to deep
supercooling of the system up to twenty degrees or more. Several
groups have applied enhanced sampling methods to ice nucleation
and gained insights to the process. Forward flux sampling4 and tran-
sition path sampling5 with aimless shooting have been used in the
studies of heterogeneous nucleation of ice on graphite surfaces with
at least 30 degrees of supercooling to compute the size of the critical
nucleus and examine the validity of the classical nucleation theory,
and both studies used the coarse-grained monatomic water model.6

Quigley and Roger employed metadynamics with Steinhardt order pa-
rameters in their study of homogeneous ice nucleation under extreme
high supercooling at 180 K with the four-site TIP4P water model.7 Niu
and coworkers also used metadynamics but with the TIP4P/ice water
model and a collective variable that was biased on x-ray diffraction
peak intensities to study homogeneous ice nucleation.8 Piaggi and
Car investigated the homogeneous nucleation of the Ih phase of ice
under atmospheric pressure at 270 K or higher temperatures, in which
the kernel CV is used in conjunction with variationally enhanced
sampling.9

In this work we study homogeneous ice nucleation at 280 K, seven
degrees above the melting temperature of ice Ih with VES-PICV en-
hanced sampling. We bias the kernel CVs in our simulations to drive
the transitions between liquid water and ice Ih.

83

84 crystallization of ice and urea

5.1.1 Details of Simulations

We used the LAMMPS10 package (version 10Feb21) as the MD engine in
the simulations of ice in the isobaric-isothermal ensemble (NPT). The
time step is 2 fs. The Nosé-Hoover chain thermostat11 is used at the
target temperature 280.0 K with the length of the chain equal to three.
The damping constant for the thermostat is 100 fs. The Nosé-Hoover
chain barostat of length equal to three is used.12 The target pressure is
1.0 bar. The damping constant for the barostat is 1000 fs. The three
dimensions of the simulation box is coupled during the relaxation by
the barostat. The simulation box was not allowed to deform during
relaxation. We have conducted both single walker simulations and
multiple walker simulations. In the single walker simulations, we
have used both liquid water configuration and hexagonal ice state to
start the simulations. In the multiple walker simulations there were
eight walkers, which were divided into two groups of four walkers
that share the same initial configuration either in the liquid water
state or in the hexagonal ice state. Initial velocities for each walker are
generated a with different random seed in a Gaussian distribution, in
order that a broader phase space could be sampled by the simulations.
We started the multiple simulations with both the liquid water state
and the hexagonal ice state so as to accelerate the convergence of
the biased potential in the enhanced sampling. There are 288 water
molecules or 864 atoms in the simulation box, which measures 18.2×
23.6 × 22.2 Å3 in size with periodic boundary conditions applied in
all three dimensions. The water molecules are modeled by the four-
site TIP4P/ice water model,13 in which the positive partial charges
are placed on the hydrogen atoms, and the negative charge is on a
ghost site (also known as the M site) 0.1577 Å from the oxygen atom
bisecting the H-O-H angle in the same plane, as shown in Figure 5.1.

Figure 5.1: A schematic illustration of
the TIP4P/ice water model.

The Lennard-Jones interactions
are only computed between the
oxygen atoms. The cutoff dis-
tances of both the electrostatic
interaction and Lennard-Jones in-
teraction are both 8.5 Å. The long-
range electrostatic interaction is
computed with a particle-particle
particle-mesh solver with relative
accuracy of 10−5. A tail correc-

tion is applied to the long range Lennard-Jones interaction. The O-H
bond length and the H-O-H bond angle are restrained using the
shake algorithm14 with the energy tolerance of 1.0× 104 kcal/mol in
maximal 200 iterations.

5.1 ice 85

5.1.2 the Kernel CV

The kernel CVs were biased in the VES-PICV simulations of ice, which
we have first introduced in the simulations of bulk sodium in Sec-
tion 4.3.2. It is a measure of local structural similarity of a system
of interest when compared with a reference template. The structural
similarity is computed with a Gaussian kernel. More information
about the kernel CV about the kernel CV can be found in Section 4.3.2.
The kernel CV is computed as

k̃χ0
(χ) =

∑i∈χ∑j∈χ0
s(ri) exp(− ∣ri−r0

j ∣2

4σ2)

∑i∈χ s(ri)
, (5.1)

in which χ and χ0 denote the environments of the system of interest
and the reference template, respectively. The number of neighbors is
n, which is 17 for ice Ih. The σ controls the spread of the Gaussian
kernel, is chosen to be 0.055 nm. ri is the vector of the ith neighbor
to the center atom in the system of interest, while r0j is the vector the
jth neighbor to the center atom in the reference template. The kernel
CV k̃χ0

(χ) is computed as a weighted average, and the weights are
computed with a switching function s(ri). The function form of s(ri)
is given below.

s(ri) =
1− (ri

r0
)
12

1− (ri
r0
)
24

, (5.2)

where ri is the norm of vector ri, and r0 = 1 nm.
Only the oxygen atoms are considered when computing the kernel

CVs. Naturally occurring ice or ice obtained from MD simulations has
a disordered hydrogen arrangement, and has an overall zero dipole
moment. Water molecules famously form the tetrahedral structures in
the ice Ih phase, in which a water molecule has four nearest neighbors
on the vertex corners of the tetrahedron. Due to the symmetry of the
tetrahedron, four orientations are possible inside the simulation box.9

Therefore, four templates correspond to the four orientations are used
in the calculation of k̃χ0

, one of which is shown in Figure 5.2d. The set
of four templates is X = {χ1,χ2,χ3,χ4}. kX(χ) is the maximum among
the set {k̃χ1

(χ), k̃χ2
(χ), k̃χ3

(χ), k̃χ4
(χ)}, and it is computed using

kX(χ) =
1

t
log(

4

∑
i

exp [t ⋅ k̃χi
(χ)]) , (5.3)

where t = 100. Equation 5.3 is used to obtain smooth bias forces.
The probability distribution of kX(χ) for liquid water and hexagonal

ice, and their snapshots are shown in Figure 5.2. The probability
distribution were computed for 288 water molecules simulated at
270 K for the ice structure and at 400 K for liquid water. Figure 5.2c

86 crystallization of ice and urea

(a) (b)

0.2 0.4 0.6 0.8 1.0
kX(χ)

0

2

4

6

8

Pr
ob

ab
ili

ty
D

is
tr

ib
ut

io
n

water
ice Ih

(c) (d)

Figure 5.2: (a) A snapshot of liquid water. (b) A snapshot of hexagonal ice looked from
the basal plane. (c) The histogram of kX(χ) in liquid water and hexagonal ice. (d) The ice
Ih template with the center oxygen atom in orange and the seventeen nearest neighbors in
green. The hydrogen atoms are not shown.

5.1 ice 87

shows the possibility of kX(χ) as permutational invariant collective
variables to study crystallization of hexagonal ice.

There are two other global collective variables that we used to
characterize the state of the system. The first is the number of ice-like
particles in the system nice. Based on Figure 5.2, we decide whether a
water molecule is ice-like or water-like based on their values of kernel
CVs. If the kernel CV is equal or greater than 0.5, we say the molecule
is ice-like. Otherwise, the water molecule is water-like. The nice is the
total number of water molecules that are ice-like, which is computed
as

nnice =
N

∑
i

⎡⎢⎢⎢⎢⎢⎣
1−

1− (kX(χi)
0.5)

12

1− (kX(χi)
0.5)

24

⎤⎥⎥⎥⎥⎥⎦
. (5.4)

The Steinhardt order parameter Q6 has been introduced previously
in Section 3.2.2. For the switching function the 12th-24th power is
used. To compute Q6, R0 = 0.3 nm and D0 = 0 nm.

5.1.3 Parameters in VES-PICV

The Legendre polynomials up to 20
th order are used as the basis

functions of the bias potential to cover a range from 0.1 to 0.95 in
kX(χ). Well-tempered distribution with the bias factor equal to 2 is
used as the target distribution ptg(s), and it is updated every 250

iterations. The average stochastic gradient descent optimizer is used to
update the linear coefficients every 500 MD steps per iteration. The step
size of the optimizer is 2.0. The plumed.dat file for the multiple-walker
simulations can be found in Listing E.1.

5.1.4 Results

The time series of the kernel CV of a typical water molecule, and that
of the global CVs Q6 and nice are given in Figure 5.3. The difference
between the single walker simulation and multiple walker simulations
is immediately apparent from the time series of the biased kernel
CV (Figure 5.3a vs 5.3b). The kernel CV kX(χ) of the single walker
simulations visits the entire range of values, while it is confined
in the starting region of values in the multiple walker simulations.
Furthermore, the unbiased global CVs Steinhardt order parameter
Q6 (Figure 5.3c) and the number of ice particles nice (Figure 5.3e)
demonstrate that in the single walker simulations the system can move
back forth between the ice Ih state and liquid state rapidly, driven by
the bias potential.

In the multiple walker simulations, however, we do not see any
effective transitions between the two states. As can been in Figure 5.3f

88 crystallization of ice and urea

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5

k
X
(χ
)

time [ns]
(a)

0

0.2

0.4

0.6

0.8

1

0 0.5 1 1.5 2 2.5

k
X
(χ
)

time [ns]
(b)

0

0.1

0.2

0.3

0.4

0.5

0 1 2 3 4 5 6

Q
6

time [ns]
(c)

0

0.1

0.2

0.3

0.4

0.5

0.6

0 0.5 1 1.5 2 2.5

Q
6

time [ns]
(d)

0

50

100

150

200

250

300

0 1 2 3 4 5 6

n
ic

e

time [ns]
(e)

0

50

100

150

200

250

300

0 0.5 1 1.5 2 2.5

n
ic

e

time [ns]
(f)

Figure 5.3: The time series of the kernel CV kX(χ) (a) of a typical water molecule,
Steinhardt order parameter Q6 (c), number of ice-like water molecules nice (e) in the
single walker simulation, and the kernel CV (b) of a typical water molecule in walker 1

(purple) and water 5 (yellow), Q6 (d) and number of ice-like water molecules nice (f) of
all eight walkers in the multiple walker simulations.

5.2 urea 89

and Figure 5.3d, the walkers stay in their initial states during the sim-
ulations, despite the same CVs and same parameters in VES-PICV are
used as in the single walker simulations. In our efforts to improve the
sampling of the multiple walker simulations, we have tried parameters
in the simulations, for example, different forms of basis functions, the
same basis functions but with different ranges, the uniform target
distribution instead of the well-tempered target distribution, different
step sizes for the stochastic gradient descent optimizer, or the ADAM
optimizer and so on. Despite these different parameters, we do not see
marked improvements in the sampling of multiple walker simulations
of ice with VES-PICV.

5.2 urea

Urea is a simple molecule comprising of only eight atoms in a relatively
rigid structure, which is shown in Figure 5.4. Nevertheless, urea
has a rich polymorphism, with at least five metastable crystal forms
reported previously.15–17 Molecular simulations have been used in
studies of polymorphism of urea crystals.18 The form I urea crystal has
been found to be the most stable polymorph under the atmospheric
pressure. The nucleation of form I urea crystal has been studied by
others previously using computer simulations, either from the melt19,
or from a solution20. Here, we also study the crystallization of urea
from melt with the VES-PICV enhanced sampling method.

O

C
NH2NH2

Figure 5.4: The chemical structure of a urea molecule.

5.2.1 Simulation details

GROMACS 2019 is used for the MD simulations. The simulations were
conducted in the isobaric-isothermal ensemble (NPT). The Generalized
Amber force field (GAFF) was chosen to describe the interactions of
urea.21,22 The cutoff distances for both electrostatic interaction and
Lennard-Jones interaction are 0.9 nm. Long range electrostatic inter-
action is computed with particle-mesh Ewald (PME) method.23 The
order of interpolation of the PME method is 4. The fourier spacing for
the PME method is 0.15 nm, and the relative tolerance is 1.0 × 10−5.
All bonds formed with a hydrogen atom are constrained with LINCS
algorithm24 so that the urea molecules are modeled as rigid molecules.
The time step is 0.002 ps. The stochastic velocity rescaling thermostat

90 crystallization of ice and urea

with damping constant equal to 0.1 ps is used for thermostating, and
Parrinello-Rahman barostat for barostating. The three dimensions of
the simulation box are relaxed isotropically with a time constant 1.0 ps.
The cubic simulation box is 2.21×2.21×1.86 nm3 in size with 128 urea
molecules and 1024 atoms in total. Periodic boundary conditions are
applied to all three dimensions.

5.2.2 the SMAC Collective Variable

Giberti et al. introduced the SMAC collective variable (S) to distinguish
the different polymorphs of urea in the solid phase and the liquid
phase.19 S describes the global crystallinity of a molecular crystall,
and it is the average of the individual contributions (Γ) from each
molecule in the system, i. e.,

S = 1
N

N

∑
i=1
Γi. (5.5)

The Γi has two major contributions, which describe the local packing
density of molecule i, and the relative orientations of neighboring
molecules to i, respectively. The local packing density is easily de-
scribed by the coordination numbers of molecule i within a cutoff
distance rcut. The molecule j contributes to the coordination number
of the neighboring molecule i by ϕij, which is what we call the pair-
wise coordination number in the simulations of seven Lennard-Jones
particles (Equation 4.16) and written as

ϕij(rij) =
1− (rij

rcut
)
6

1− (rij
rcut
)
12

. (5.6)

rij is the distance between the centers of mass of molecules i and
j. The coordination number of the molecule i is a sum of ϕij, i. e.,
ni = ∑j≠iϕij, when j ≠ i.

The orientations of neighboring molecules are computed for molecules
with a sufficiently large coordination number. The switching function
ψi is defined to filter out molecules with low coordination numbers:

ψi(ni) = 1− exp(− ni

ncut
) , (5.7)

where ncut is the cutoff number of neighbors.
The relative orientation of two molecules are described the sum of a

series of functions ∑nKn(θij) over all characteristic angles defined for
neighboring molecules. For a specific characteristic angle n between
molecule i and j:

Kn(θij) = exp(−(θij − θ̄n)
2

2σ2n
) , (5.8)

5.2 urea 91

where θij is the torsional angle between the internal orientation vectors
for molecules i and j, and θ̄n is the average value of θij when the
system in the crystalline state. Combining the functions above we
have the function form of Γi:

Γi =
ψi

ni
∑
j≠i
ϕij∑

n

Kn(θij)

=
ψ [∑j≠iϕ(rij)]∑j≠iϕ(rij)∑n exp(− (θij−θ̄n)2

2σ2
n
)

∑j≠iϕ(rij)
.

(5.9)

In their work of well-tempered metadynamics simulations of urea,
Giberti and coworkers defined two vectors m and n in a urea molecule
as seen Figure 5.5a, and the two corresponding SMAC collective

m

n

(a)

m

(b)

Figure 5.5: Vectors defined on a urea molecule used to computed the SMAC
CV. In (a), the m vector is defined as the C-O bond, and the n vector is the
two N atoms. In (b) the m vector is defined as the vector from the middle
point between the two N atoms to the middle point of the C-O bond.

variables Sm and Sn. For each vector, two relative orientation angle K
functions are defined. For example, for the m vector the θ̄ of the two
kernel functions is 0 and π, respectively.

We would like to point out that in the introduction of SMAC col-
lective variable,19 the authors used the Fermi function as the two
switching functions instead of the function forms used in Equation 5.6-
5.7.

In our work here, we do not bias the global SMAC collective variable
S. Instead, we bias the individual molecular contributions Γi in the
VES-PICV simulations. We have found that to distinguish the urea melt
and urea form I crystal structure, the orientations of m vectors in
Figure 5.5a are sufficient. The parameters used in the computation of
Γi is listed in Table 5.1.

rcut[nm] ncut θ̄1 θ̄2 σ1 σ2

Γi 0.6 4 0 π 0.8 0.7

Table 5.1: Parameters used in the computation of SMAC (Γi).

The probability distribution of Γi is given in Figure 5.6, in which
snapshots of the urea melt and form I urea crystal structure are also

92 crystallization of ice and urea

shown. The form I urea crystal is obtained from Cambridge Structural
Database its entry number is UREAXX02. Its structure was determined
by Zavodnik et al.25 The probability distribution of Γi for the solid
state is computed for a trajectory of urea crystal simulated at 300

K. The probability distribution for the liquid state is computed for a
trajectory of urea melt at 500 K. Although there is an overlap between
two distributions, the two distributions are different enough for us to
use Γi in our VES-PICV simulations.

ves-picv The 20
th order Legendre functions were used as the basis

functions over the range from 1 to 14. The target distribution was
the well-tempered distribution. We have tried several values for the
bias factor γ from 1.2 to 3. The average stochastic gradient optimizer
was used with a stride of 1000 steps. The target distribution was
updated every 100 iterations. The plumed.dat used for the simulations
is included in Listing E.2.

5.2.3 Results

In our simulations of urea, we have encountered an issue with the
LINCS algorithm, and the simulations would break down around 100

ps. To overcome this issue, we redefined the m vector as from the
middle of the two nitrogen atoms to the middle of carbon and oxygen
atoms, as shown in Figure 5.5b. Although this change slight extended
simulations to around 200 ps, the VES-PICV simulations still broke
down.

5.3 discussions

The results of VES-PICV have highlighted the need of deeper under-
standing of effects of biasing a group of permutational invariant collec-
tive variables so that it can be successfully applied to phase transitions.
It is quite puzzling why the single walker simulations should be able
to drive ice nucleation, while the multiple walker simulations are not.
In the case of VES-PICV simulations of urea, the bias force seemed to
have interfered with the LINCS algorithm that constrains the lengths
of bonds involving hydrogen atoms, which regularly broke down
during the simulations. Better distributions of the bias force among
the atoms of a molecule can provide relieve to this issue, however,
more improvements to the method are needed.

5.3 discussions 93

(a)

(b)

8 10 12 14

Γi

0.0

0.2

0.4

0.6

Pr
ob

ab
ili

ty
D

is
tr

ib
ut

io
n melt

form I

(c)

Figure 5.6: (a) A snapshot of urea melt. (b) A snapshot of urea crystal. (c)
Histograms of Γi in liquid urea and in form I urea crystal.

94 crystallization of ice and urea

references

1. Schneider, J. et al. The Seasonal Cycle of Ice-Nucleating Particles
Linked to the Abundance of Biogenic Aerosol in Boreal Forests.
Atmospheric Chemistry and Physics 21, 3899–3918 (2021).

2. Gorbunov, B., Baklanov, A., Kakutkina, N., Windsor, H. & Toumi,
R. Ice Nucleation on Soot Particles. Journal of Aerosol Science 32,
199–215 (Feb. 1, 2001).

3. Knopf, D. A., Alpert, P. A. & Wang, B. The Role of Organic
Aerosol in Atmospheric Ice Nucleation: A Review. ACS Earth
Space Chem. 2, 168–202 (Mar. 15, 2018).

4. Cabriolu, R. & Li, T. Ice Nucleation on Carbon Surface Supports
the Classical Theory for Heterogeneous Nucleation. Phys. Rev. E
91, 052402 (May 13, 2015).

5. Lupi, L., Peters, B. & Molinero, V. Pre-Ordering of Interfacial
Water in the Pathway of Heterogeneous Ice Nucleation Does Not
Lead to a Two-Step Crystallization Mechanism. J. Chem. Phys. 145,
211910 (Dec. 7, 2016).

6. Molinero, V. & Moore, E. B. Water Modeled As an Intermediate
Element between Carbon and Silicon. J. Phys. Chem. B 113, 4008–
4016 (Apr. 2, 2009).

7. Quigley, D. & Rodger, P. M. Metadynamics Simulations of Ice
Nucleation and Growth. J. Chem. Phys. 128, 154518 (Apr. 18, 2008).

8. Niu, H., Piaggi, P. M., Invernizzi, M. & Parrinello, M. Molecular
Dynamics Simulations of Liquid Silica Crystallization. PNAS 115,
5348–5352 (May 22, 2018).

9. Piaggi, P. M. & Car, R. Phase Equilibrium of Liquid Water and
Hexagonal Ice from Enhanced Sampling Molecular Dynamics
Simulations. J. Chem. Phys. 152, 204116 (May 27, 2020).

10. Plimpton, S. Fast Parallel Algorithms for Short-Range Molecular
Dynamics. Journal of Computational Physics 117, 1–19 (Mar. 1, 1995).

11. Hoover, W. G. Canonical Dynamics: Equilibrium Phase-Space
Distributions. Phys. Rev. A 31, 1695–1697 (Mar. 1, 1985).

12. Tuckerman, M. E., Alejandre, J., López-Rendón, R., Jochim, A. L.
& Martyna, G. J. A Liouville-operator Derived Measure-Preserving
Integrator for Molecular Dynamics Simulations in the Isother-
mal–Isobaric Ensemble. Journal of Physics A: Mathematical and
General 39, 5629–5651 (Apr. 24, 2006).

13. Abascal, J. L. F., Sanz, E., García Fernández, R. & Vega, C. A
Potential Model for the Study of Ices and Amorphous Water:
TIP4P/Ice. The Journal of Chemical Physics 122, 234511 (June 15,
2005).

5.3 discussions 95

14. Ryckaert, J.-P., Ciccotti, G. & Berendsen, H. J. Numerical Inte-
gration of the Cartesian Equations of Motion of a System with
Constraints: Molecular Dynamics of n-Alkanes. Journal of Compu-
tational Physics 23, 327–341 (Mar. 1, 1977).

15. Dziubek, K., Citroni, M., Fanetti, S., Cairns, A. B. & Bini, R. High-
Pressure High-Temperature Structural Properties of Urea. J. Phys.
Chem. C 121, 2380–2387 (Feb. 2, 2017).

16. Lamelas, F. J., Dreger, Z. A. & Gupta, Y. M. Raman and X-Ray
Scattering Studies of High-Pressure Phases of Urea. J. Phys. Chem.
B 109, 8206–8215 (Apr. 1, 2005).

17. Olejniczak, A., Ostrowska, K. & Katrusiak, A. H-Bond Breaking
in High-Pressure Urea. J. Phys. Chem. C 113, 15761–15767 (Sept. 3,
2009).

18. Piaggi, P. M. & Parrinello, M. Predicting Polymorphism in Molec-
ular Crystals Using Orientational Entropy. PNAS 115, 10251–
10256 (Oct. 9, 2018).

19. Giberti, F., Salvalaglio, M., Mazzotti, M. & Parrinello, M. Insight
into the Nucleation of Urea Crystals from the Melt. Chemical
Engineering Science 121, 51–59 (Jan. 2015).

20. Salvalaglio, M., Mazzotti, M. & Parrinello, M. Urea Homogeneous
Nucleation Mechanism Is Solvent Dependent. Faraday Discuss.
179, 291–307 (2015).

21. Cornell, W. D., Cieplak, P., Bayly, C. I., Gould, I. R., Merz, K. M.,
Ferguson, D. M., Spellmeyer, D. C., Fox, T., Caldwell, J. W. & Koll-
man, P. A. A Second Generation Force Field for the Simulation
of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem.
Soc. 117, 5179–5197 (May 1, 1995).

22. Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A. & Case, D. A.
Development and Testing of a General Amber Force Field. Journal
of Computational Chemistry 25, 1157–1174 (July 15, 2004).

23. Hockney, R. W. & Eastwood, J. W. Computer Simulation Using
Particles 540 pp. (CRC Press, Boca Raton, Mar. 25, 2021).

24. Hess, B. P-LINCS: A Parallel Linear Constraint Solver for Molec-
ular Simulation. J. Chem. Theory Comput. 4, 116–122 (Jan. 1, 2008).

25. Zavodnik, V., Stash, A., Tsirelson, V., de Vries, R. & Feil, D. Elec-
tron Density Study of Urea Using TDS-corrected X-ray Diffraction
Data: Quantitative Comparison of Experimental and Theoretical
Results. Acta Cryst B 55, 45–54 (1 Feb. 1, 1999).

6 C O N C L U S I O N S

In Chapter 1, we have introduced the basics of Monte Carlo simula-
tions, molecular dynamics simulations, and the theoretical foundation
for both methods — statistical thermodynamics. In MD simulations
the velocity Verlet integrator can be used to propagate the dynamics of
the system, and maintains a constant internal energy. Thermostats and
barostats are used for simulations in the canonical ensemble (NVT) or
the isobaric-isothermal ensemble (NPT).

In Chapter 2, we have discussed different flavors of enhanced sam-
pling methods, including umbrella sampling, metadynamics and its
popular variant well-tempered metadynamics, and the variationally
enhanced sampling method. They build a customized bias potential
in different processes over a representative collective variable space
(s) of reduced dimensions in comparison to the high dimensional
phase space. The underlying free energy surface F(s) can be estimated
according to its relationship with the bias potential V(s) when the
convergence of sampling has been reached. Additionally, the free
energy estimation can also be achieved by reweighting. Reweighting
poses a less stringent demand on the convergence of the bias potential.
Furthermore, users can obtain projections of the free energy surface
to collective variables that are not biased in the simulations. Residual
reweighting and last bias reweighting have been introduced in Chapter
2. PLUMED 2 is a plugin library that has implemented the enhanced
sampling methods mentioned above and various collective variables.
PLUMED 2 can be used together with many popular MD engines
during real time simulations. Or it can be used in postprocessing.

The development of enhanced sampling methods has broadened
role that computer simulations paly in tackling various scientific ques-
tions. To give ESPResSo++, a MD engine developed and maintained
by the Theory group of Max Planck Institute for Polymer Research,
Mainz, access to PLUMED 2, we have developed an extension that con-
nects the two software packages. With PLUMED 2 and ESPResSo++,
we have investigated the first order transition of the 128 monomer
long single-chain square-well with well-tempered metadynamics. In
the MD simulations, rigid bonds of the single-chain square-well poly-
mer is replaced with harmonic bonds, and the square-well potential
between nonbonded monomers are is replaced a smooth square-well
potential so that a smooth force can be derived in the MD simulations.
We have performed three biased simulations at three temperatures,
at the previously reported coexistence temperature, one below it and
one above it. Then we determined the free energy of crystallization

97

98 conclusions

from these three simulations by reweighting. And then the coexistence
temperature is determined from the free energy of crystallization. Our
result largely agree with previously reported result.

In Chapter 4 we have introduced a new development of variation-
ally enhanced sampling so that permutationally invariant collective
variables can be used with VES. Permutationally invariant collective
variables are local collective variables with arbitrarily exchangeable
indexes. They are particularly useful in distinguishing different poly-
morphs of molecular or atomic crystals. We have modified the process
of updating the bias potential that is represented by a linear combina-
tions of the basis functions. We dubbed the new method variationally
enhanced sampling with permutationally invariant collective variables
(VES-PICV). We have applied the new method to two systems: seven
Lennard-Jones particles in a two dimensional space and the bulk
sodium. The permutationally invariant collective variables are the co-
ordinate numbers and kernel CVs in the two simulations, respectively.
We have been able to estimate the free energy landscape for the cases
by reweighting. We have also examined the sampled distributions
of the coordination numbers of the seven particles, which have con-
verged. In the case of the bulk sodium, the sampled distributions of
the kernel CVs, however, did not converge fully in the simulation. In
both cases, we have obtained free energy surface estimations in good
qualities by reweighting.

In Chapter 5, we have applied the VES-PICV method to ice nucleation
and crystallization of urea from the melt. We have biased the local
kernel CVs for ice nucleation, and the local SMAC collective variables
for crystallization of urea. In the multiple walker simulations of ice
nucleation, VES-PICV methods could not drive transitions between
the liquid state and the ice Ih state, although the simulations ran to
completion. In the case of urea, however, the simulations would break
down only 200 ps into the simulations. Other collective variables may
be explored in the future in order for the simulations to proceed.

The difficulties that we have run into in the simulation studies of
ice nucleation and crystallization of urea highlight the need of further
development of VES-PICV methods so that it see wider applications.

A P P E N D I X

99

A S O U R C E C O D E O F T H E
E X T P L U M E D E X T E N S I O N

The source code of the ExtPlumed extension is in three files: ExtPlumed.py,
ExtPlumed.hpp and ExtPlumed.cpp.

Listing A.1: ExePlumed.py

1 # Copyright (C) 2018

Max Planck Institute for Polymer Research

#

This file is part of ESPResSo++.

#

6 # ESPResSo++ is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

#

11 # ESPResSo++ is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

#

16 # You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

r"""

21 ***
espressopp.integrator.ExtPlumed

This extension serves as interface between ESPResSo++ and ‘PLUMED ⤦

Ç <http://www.plumed.org/home>‘_. PLUMED can

26 be used to run realtime analysis and bias the simulation along chosen ⤦

Ç collective variables. Details of using

PLUMED and its input file can be found on its website.

To call PLUMED, set environment variable :envvar:‘PLUMED_KERNEL‘ to ⤦

Ç the full path of libplumedKernel.so, and add

the path of the directory of libplumed.so to environment variable ⤦

Ç :envvar:‘LD_LIBRARY_PATH‘, when PLUMED is linked through ⤦

Ç runtime linking.

31 If PLUMED is linked by dynamic linking, i.e., it is linked as a shared ⤦

Ç library to ESPResSo++, :envvar:‘PLUMED_KERNEL‘ needs not to be ⤦

Ç set.

If PLUMED is linked statically, neither environment variable needs to ⤦

Ç be provided.

Error messages regarding to "undefined symbol" can be ignored, as long ⤦

Ç as the simulation runs.

101

102 source code of the extplumed extension

By default, PLUMED is linked by runtime linking. The user can change ⤦

Ç the way of PLUMED linking to ESPResSo++ by changing CMake ⤦

Ç variable :makevar:‘PLUMED_LINK_TYPE‘

36 to either "shared" or "static" from the default "runtime". If your ⤦

Ç distribution of PLUMED is not installed in a default system ⤦

Ç directory, you can define the root

path of PLUMED installation as CMake variable :makevar:‘PLUMED_HOME‘. ⤦

Ç If you keep the default "runtime" linking, your installation of ⤦

Ç PLUMED is not searched. Hence, you

do not need to worry about whether your PLUMED is not installed in a ⤦

Ç default system directory or setting :makevar:‘PLUMED_HOME‘.

usage:

41

.. code:: python

plumed = espressopp.integrator.ExtPlumed(system, "plumed.dat", ⤦

Ç "log.plumed", 0.005)

plumed.setNaturalUnits()

46 plumed.Init()

integrator.addExtension(plumed)

or:

51 .. code:: python

plumed = espressopp.integrator.ExtPlumed(system, "plumed.dat", ⤦

Ç "log.plumed", 0.005)

plumed.setNaturalUnits()

plumed.setRestart(1)

56 plumed.Init()

integrator.addExtension(plumed)

.. function:: espressopp.integrator.ExtPlumed(system, cmd, log, dt)

61 :param system: The Espresso++ system object.

:type system: espressopp.System

:param cmd: input file for PLUMED

:type cmd: ‘‘str‘‘

:param log: log file for PLUMED

66 :type log: ‘‘str‘‘

:param dt: time step

:type dt: ‘‘float‘‘ (default: 0.005)

"""

71 from espressopp.esutil import cxxinit

from espressopp import pmi

from espressopp.integrator.Extension import *
from _espressopp import integrator_ExtPlumed

import mpi4py.MPI as MPI

76

class ExtPlumedLocal(ExtensionLocal, integrator_ExtPlumed):

def __init__(self, system, cmd, log, dt, restart=False):

81 if not (pmi._PMIComm and pmi._PMIComm.isActive()) or ⤦

Ç pmi._MPIcomm.rank in pmi._PMIComm.getMPIcpugroup():

source code of the extplumed extension 103

cxxinit(self, integrator_ExtPlumed, system, cmd, log, dt, ⤦

Ç restart)

if pmi.isController :

class ExtPlumed(Extension):

86 __metaclass__ = pmi.Proxy

pmiproxydefs = dict(

cls = ’espressopp.integrator.ExtPlumedLocal’,

pmicall = [’getBias’]

)

Listing A.2: ExtPlumed.hpp

/*
Copyright (C) 2018

Max Planck Institute for Polymer Research

5 This file is part of ESPResSo++.

ESPResSo++ is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

10 (at your option) any later version.

ESPResSo++ is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

15 GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

*/

20

// ESPP_CLASS

#ifndef _INTEGRATOR_ExtPlumed_HPP

#define _INTEGRATOR_ExtPlumed_HPP

25 #include "python.hpp"

#include "types.hpp"

#include "Extension.hpp"

#include "boost/signals2.hpp"

#include "mpi.hpp"

30 #include "Particle.hpp"

#include "Plumed.h"

namespace espressopp {

namespace integrator {

35

/** ExtPlumed */

class ExtPlumed : public Extension {

public:

40 ExtPlumed(shared_ptr < System >, std::string, std::string, real, ⤦

Ç bool);

real getBias();

virtual ~ExtPlumed();

104 source code of the extplumed extension

/** Register this class so it can be used from Python. */

45 static void registerPython();

private:

PLMD::Plumed * p;

real dt;

50 long step;

longint nreal; // total number of atoms (real & ghost) on the ⤦

Ç processor

longint natoms; // total number of atoms

int * gatindex;

55 real * masses;

real * charges;

real * pos;

real * f;

real bias;

60 bool particlesChanged;

boost::signals2::connection _runInit, _aftCalcF, _aftIntP;

boost::signals2::connection _onParticlesChanged;

65 void onParticlesChanged();

void connect();

void disconnect();

void setStep();

void updateForces();

70 void updateStep();

};

}

}

75 #endif

Listing A.3: ExtPlumed.cpp

/*
Copyright (C) 2018

Max Planck Institute for Polymer Research

5 This file is part of ESPResSo++.

ESPResSo++ is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

10 (at your option) any later version.

ESPResSo++ is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

15 GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

*/

20

#include <string>

#include "python.hpp"

#include "System.hpp"

#include "storage/Storage.hpp"

source code of the extplumed extension 105

25 #include "interaction/Interaction.hpp"

#include "iterator/CellListIterator.hpp"

#include "bc/BC.hpp"

#include "ExtPlumed.hpp"

#include "mpi.hpp"

30

namespace espressopp {

using namespace iterator;

using std::string;

35

namespace integrator {

ExtPlumed::ExtPlumed(shared_ptr<System> _system, string _dat, string _log, ⤦
Ç real _dt, bool _restart):

Extension(_system),

40 dt(_dt),

step(0),

nreal(0),

gatindex(NULL),

masses(NULL),

45 f(NULL),

pos(NULL),

charges(NULL),

particlesChanged(false)

{

50 p=new PLMD::Plumed;

int real_precision = sizeof(real);

p->cmd("setRealPrecision",&real_precision);

p->cmd("setMDEngine","ESPResSo++");

MPI_Comm comm = MPI_Comm(*_system->comm);

55 p->cmd("setMPIComm", &comm);

bool dat_is_file = (_dat.find_first_of("\n") > _dat.size()); // test if ⤦
Ç input is a multline string.

if (dat_is_file) p->cmd("setPlumedDat", _dat.c_str());

p->cmd("setLogFile", _log.c_str());

p->cmd("setTimestep",&dt);

60 longint tmp = _system->storage->getNRealParticles();

boost::mpi::all_reduce(*_system->comm, tmp, natoms, std::plus<longint>());

p->cmd("setNatoms",&natoms);

if (_restart) {

int res = 1;

65 p->cmd("setRestart", &res);

}

p->cmd("init");

if (!dat_is_file) {

std::istringstream iss(_dat);

70 std::string token;

iss >> std::ws; // remove leading white spaces in a line

while(std::getline(iss, token)) {

iss >> std::ws; // remove leading white spaces in a line

if (token[0] == ’#’) continue;

75 p->cmd("readInputLine", token.c_str());

token.clear();

}

}
_onParticlesChanged = ⤦

Ç _system->storage->onParticlesChanged.connect(boost::bind(⤦
Ç &ExtPlumed::onParticlesChanged, this));

80 }

ExtPlumed::~ExtPlumed() {
_onParticlesChanged.disconnect();

delete [] f;

85 delete [] pos;

delete [] charges;

106 source code of the extplumed extension

delete [] gatindex;

delete [] masses;

delete p;

90 }

real ExtPlumed::getBias() {

return bias;

}

95

void ExtPlumed::onParticlesChanged() {

particlesChanged = true;

}

100 void ExtPlumed::disconnect() {
_runInit.disconnect();
_aftCalcF.disconnect();
_aftIntP.disconnect();

}

105

void ExtPlumed::connect() {
_runInit = integrator->runInit.connect(boost::bind(&ExtPlumed::setStep, ⤦

Ç this));
_aftCalcF = integrator->aftCalcF.connect(⤦

Ç boost::bind(&ExtPlumed::updateForces, this));
_aftIntP = integrator->aftIntP.connect(⤦

Ç boost::bind(&ExtPlumed::updateStep, this));

110 }

void ExtPlumed::setStep() {

step = long(integrator->getStep());

}

115

void ExtPlumed::updateForces() {

System& system = getSystemRef();

CellList realCells = system.storage->getRealCells();

120 if (nreal!=system.storage->getNRealParticles()) {

nreal = system.storage->getNRealParticles();

if(charges) delete [] charges;

if(masses) delete [] masses;

if(gatindex) delete [] gatindex;

125 if(pos) delete [] pos;

if(f) delete [] f;

gatindex = new int [nreal];

masses = new real [nreal];

charges = new real [nreal];

130 pos = new real[nreal*3];

f = new real[nreal*3];

for(auto tp=std::make_pair(0, CellListIterator(realCells));

tp.first<nreal && !tp.second.isDone();

135 ++tp.first, ++tp.second)

{

gatindex[tp.first] = tp.second->getId() - 1;

}

particlesChanged = false;

140

} else if (particlesChanged) {

for(auto tp=std::make_pair(0, CellListIterator(realCells));

tp.first<nreal && !tp.second.isDone();

++tp.first, ++tp.second)

145 {

gatindex[tp.first] = tp.second->getId() - 1;

}

particlesChanged = false;

}

source code of the extplumed extension 107

150

for(auto tp=std::make_pair(0, CellListIterator(realCells));

tp.first<nreal && !tp.second.isDone();

++tp.first, ++tp.second)

{

155 masses[tp.first] = tp.second->mass();

charges[tp.first] = tp.second->q();

std::copy(tp.second->force().begin(), tp.second->force().end(), ⤦
Ç &f[tp.first*3]);

std::copy(tp.second->position().begin(), tp.second->position().end(), ⤦
Ç &pos[tp.first*3]);

}

160

p->cmd("setStepLong",&step);

p->cmd("setAtomsNlocal",&nreal);

p->cmd("setAtomsGatindex",&gatindex[0]);

165 real box[3][3];

for(int i=0;i<3;i++) for(int j=0;j<3;j++) box[i][j]=0.0;

Real3D L = system.bc->getBoxL();

box[0][0]=L[0];

box[1][1]=L[1];

170 box[2][2]=L[2];

real virial[3][3];

for(int i=0; i<3; ++i) for(int j=0; j<3; ++j) virial[i][j]=0.0;

175 p->cmd("setPositions", pos);

p->cmd("setForces", f);

p->cmd("setBox",&box[0][0]);

p->cmd("setMasses",masses);

p->cmd("setCharges",charges);

180 p->cmd("setVirial", &virial[0][0]);

p->cmd("getBias",&bias);

p->cmd("prepareCalc");

int plumedNeedsEnergy = 0;

185 p->cmd("isEnergyNeeded", &plumedNeedsEnergy);

if (plumedNeedsEnergy) {

real pot_energy = 0.;

const interaction::InteractionList& srIL = system.shortRangeInteractions;

for (size_t j =0; j < srIL.size(); ++j) {

190 pot_energy += srIL[j]->computeEnergy();

}

pot_energy /= system.comm->size(); // PLUMED defines PE this way.

p->cmd("setEnergy", &pot_energy);

}

195 p->cmd("performCalc");

for(auto tp=std::make_pair(0, CellListIterator(realCells));

tp.first<nreal && !tp.second.isDone();

++tp.first, ++tp.second)

200 {

std::copy(&f[tp.first*3], &f[tp.first*3+3], tp.second->force().begin());

}

}

205 void ExtPlumed::updateStep() {step++;}

/**

** REGISTRATION WITH PYTHON

**/

210

void ExtPlumed::registerPython() {

using namespace espressopp::python;

108 source code of the extplumed extension

215 class_<ExtPlumed, shared_ptr<ExtPlumed>, bases<Extension> >

("integrator_ExtPlumed", init< shared_ptr< System >, string, string, ⤦
Ç real, bool>())

.def("getBias", &ExtPlumed::getBias)

.def("connect", &ExtPlumed::connect)

220 .def("disconnect", &ExtPlumed::disconnect)

;

}

}

}

B S O U R C E C O D E F O R T H E
S M O OT H S Q U A R E -W E L L
P OT E N T I A L

The implementation of the smooth square-well pairwise potential
involves three files, SmoothSquareWell.py, SmoothSquareWell.hpp
and SmoothSquareWell.cpp. Their contents are listed below.

Listing B.1: SmoothSquareWell.py

1 # Copyright (C) 2017,2018

Max Planck Institute for Polymer Research

#

This file is part of ESPResSo++.

#

6 # ESPResSo++ is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

#

11 # ESPResSo++ is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

#

16 # You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

r"""

21 espressopp.interaction.SmoothSquareWell

This is an implementation of the smoothed square-well potential from ‘Leitold ⤦

Ç and Dellago JCP 141, 134901 (2014) ⤦
Ç <https://doi.org/10.1063/1.4896560>‘_ :

.. math::

26

V(r) = \frac{\varepsilon}{2} \left\{ \exp\left[\frac{-(r-\sigma)}{a}\right] ⤦
Ç + \tanh\left[\frac{r-\lambda\sigma}{a}\right] - 1 \right\},

of which :math:‘a‘ dictates the steepness of the slope of the square well, and ⤦
Ç :math:‘{\lambda\sigma}‘ determines the width of the step, and ⤦
Ç :math:‘{\sigma}‘ is the bond length of the polymer.

31 To reproduce the potential in the prior reference, use the code below.

.. code:: python

pot = espressopp.interaction.SmoothSquareWell(epsilon=1.0,sigma=1.0,cutoff=2.5)

36 pot.a = 0.002

pot.Lambda = 1.05

The SmoothSquareWell potential supports VerletListInteraction, ⤦
Ç FixedPairListInteraction and FixedPairListTypesInteraction.

109

110 source code for the smooth square-well potential

41 """

from espressopp import pmi, infinity

from espressopp.esutil import *

46 from espressopp.interaction.Potential import *
from espressopp.interaction.Interaction import *
from _espressopp import interaction_SmoothSquareWell, ⤦

Ç interaction_VerletListSmoothSquareWell, \

interaction_FixedPairListSmoothSquareWell, ⤦
Ç interaction_FixedPairListTypesSmoothSquareWell

51 class SmoothSquareWellLocal(PotentialLocal, interaction_SmoothSquareWell):

def __init__(self, epsilon=1.0, sigma=0.0, cutoff=infinity, shift=0.0):

"""Initialize the local SmoothSquareWell object."""

if not (pmi._PMIComm and pmi._PMIComm.isActive()) or pmi._MPIcomm.rank ⤦
Ç in pmi._PMIComm.getMPIcpugroup():

56 if shift == "auto":

cxxinit(self, interaction_SmoothSquareWell, epsilon, sigma, ⤦
Ç cutoff)

else:

cxxinit(self, interaction_SmoothSquareWell, epsilon, sigma, ⤦
Ç cutoff, shift)

61 class VerletListSmoothSquareWellLocal(InteractionLocal, ⤦
Ç interaction_VerletListSmoothSquareWell):

def __init__(self, vl):

if not (pmi._PMIComm and pmi._PMIComm.isActive()) or pmi._MPIcomm.rank ⤦
Ç in pmi._PMIComm.getMPIcpugroup():

cxxinit(self, interaction_VerletListSmoothSquareWell, vl)

66

def setPotential(self, type1, type2, potential):

if not (pmi._PMIComm and pmi._PMIComm.isActive()) or pmi._MPIcomm.rank ⤦
Ç in pmi._PMIComm.getMPIcpugroup():

self.cxxclass.setPotential(self, type1, type2, potential)

71 def getPotential(self, type1, type2):

if not (pmi._PMIComm and pmi._PMIComm.isActive()) or pmi._MPIcomm.rank ⤦
Ç in pmi._PMIComm.getMPIcpugroup():

return self.cxxclass.getPotential(self, type1, type2)

def getVerletListLocal(self):

76 if not (pmi._PMIComm and pmi._PMIComm.isActive()) or pmi._MPIcomm.rank ⤦
Ç in pmi._PMIComm.getMPIcpugroup():

return self.cxxclass.getVerletList(self)

class FixedPairListSmoothSquareWellLocal(InteractionLocal, ⤦
Ç interaction_FixedPairListSmoothSquareWell):

81 def __init__(self, system, fpl, potential):

if not (pmi._PMIComm and pmi._PMIComm.isActive()) or pmi._MPIcomm.rank ⤦
Ç in pmi._PMIComm.getMPIcpugroup():

cxxinit(self, interaction_FixedPairListSmoothSquareWell, system, ⤦
Ç fpl, potential)

def setPotential(self, potential):

86 if not (pmi._PMIComm and pmi._PMIComm.isActive()) or pmi._MPIcomm.rank ⤦
Ç in pmi._PMIComm.getMPIcpugroup():

self.cxxclass.setPotential(self, potential)

def getPotential(self):

if not (pmi._PMIComm and pmi._PMIComm.isActive()) or pmi._MPIcomm.rank ⤦
Ç in pmi._PMIComm.getMPIcpugroup():

91 self.cxxclass.getPotential(self)

source code for the smooth square-well potential 111

def setFixedPairList(self, fpl):

if not (pmi._PMIComm and pmi._PMIComm.isActive()) or pmi._MPIcomm.rank ⤦
Ç in pmi._PMIComm.getMPIcpugroup():

self.cxxclass.setFixedPairList(self, fpl)

96

def getFixedPairList(self):

if not (pmi._PMIComm and pmi._PMIComm.isActive()) or pmi._MPIcomm.rank ⤦
Ç in pmi._PMIComm.getMPIcpugroup():

return self.cxxclass.getFixedPairList(self)

101 class FixedPairListTypesSmoothSquareWellLocal(InteractionLocal, ⤦
Ç interaction_FixedPairListTypesSmoothSquareWell):

def __init__(self, system, fpl, potential):

if not (pmi._PMIComm and pmi._PMIComm.isActive()) or pmi._MPIcomm.rank ⤦
Ç in pmi._PMIComm.getMPIcpugroup():

cxxinit(self, interaction_FixedPairListSmoothSquareWell, system, fpl)

106

def setPotential(self, type1, type2, potential):

if not (pmi._PMIComm and pmi._PMIComm.isActive()) or pmi._MPIcomm.rank ⤦
Ç in pmi._PMIComm.getMPIcpugroup():

self.cxxclass.setPotential(self, type1, type2, potential)

111 def getPotential(self, type1, type2):

if not (pmi._PMIComm and pmi._PMIComm.isActive()) or pmi._MPIcomm.rank ⤦
Ç in pmi._PMIComm.getMPIcpugroup():

self.cxxclass.getPotential(self, type1, type2)

def setFixedPairList(self, fpl):

116 if not (pmi._PMIComm and pmi._PMIComm.isActive()) or pmi._MPIcomm.rank ⤦
Ç in pmi._PMIComm.getMPIcpugroup():

self.cxxclass.setFixedPairList(self, fpl)

def getFixedPairList(self):

if not (pmi._PMIComm and pmi._PMIComm.isActive()) or pmi._MPIcomm.rank ⤦
Ç in pmi._PMIComm.getMPIcpugroup():

121 return self.cxxclass.getFixedPairList(self)

if pmi.isController:

class SmoothSquareWell(Potential):

’The SmoothSquareWell potential.’

126 pmiproxydefs = dict(

cls = ’espressopp.interaction.SmoothSquareWellLocal’,

pmiproperty = [’epsilon’, ’sigma’, ’Lambda’, ’a’]

)

131 class VerletListSmoothSquareWell(Interaction):
__metaclass__ = pmi.Proxy

pmiproxydefs = dict(

cls = ’espressopp.interaction.VerletListSmoothSquareWellLocal’,

pmicall = [’setPotential’, ’getPotential’, ’getVerletList’]

136)

class FixedPairListSmoothSquareWell(Interaction):
__metaclass__ = pmi.Proxy

pmiproxydefs = dict(

141 cls = ’espressopp.interaction.FixedPairListSmoothSquareWellLocal’,

pmicall = [’setPotential’, ’getPotential’, ⤦
Ç ’setFixedPairList’,’getFixedPairList’]

)

class FixedPairListTypesSmoothSquareWell(Interaction):

146 __metaclass__ = pmi.Proxy

pmiproxydefs = dict(

112 source code for the smooth square-well potential

cls = ⤦
Ç ’espressopp.interaction.FixedPairListTypesSmoothSquareWellLocal’,

pmicall = [’setPotential’, ’getPotential’, ’setFixedPairList’, ⤦
Ç ’getFixedPairList’]

)

Listing B.2: SmoothSquareWell.hpp

/*
Copyright (C) 2017,2018

Max Planck Institute for Polymer Research

4

This file is part of ESPResSo++.

ESPResSo++ is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

9 the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

ESPResSo++ is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

19 */

// ESPP_CLASS

#ifndef _INTERACTION_SQUAREWELL_HPP

#define _INTERACTION_SQUAREWELL_HPP

24

#include "Potential.hpp"

#include "VerletListInteractionTemplate.hpp"

#include "FixedPairListInteractionTemplate.hpp"

#include "FixedPairListTypesInteractionTemplate.hpp"

29 #include <cmath>

namespace espressopp {

namespace interaction {

34 /** This class provides methods to compute forces and energies of

a squarewell potential based on Leitold and Dellago J. Chem. ⤦

Ç Phys. 141. 134901 (2014)

*/

class SmoothSquareWell: public PotentialTemplate < ⤦

Ç SmoothSquareWell > {

private:

39 real lambda;

real epsilon;

real halfepsilon;

real a;

real sigma;

44 // rb=lambda*sigma. Rightside bounary of the squarewell

real rb;

public:

static void registerPython();

source code for the smooth square-well potential 113

SmoothSquareWell(): epsilon(0.0), sigma(0.0), a(0.0), ⤦

Ç lambda(0.0), halfepsilon(0.0) {

49 setShift(0.0);

setCutoff(infinity);

}

SmoothSquareWell(real _epsilon, real _sigma, real _cutoff, real ⤦

Ç _shift): epsilon(_epsilon), sigma(_sigma) {

54 halfepsilon = _epsilon/2;

setShift(_shift);

setCutoff(_cutoff);

}

59 SmoothSquareWell(real _epsilon, real _sigma, real _cutoff): ⤦

Ç epsilon(_epsilon), sigma(_sigma) {

halfepsilon = _epsilon/2;

autoShift = false;

setCutoff(_cutoff);

setAutoShift();

64 }

virtual ~SmoothSquareWell() {};

void setEpsilon(real _epsilon) {

69 epsilon = _epsilon;

halfepsilon = _epsilon/2;

updateAutoShift();

}

74 real getEpsilon() const {return epsilon;}

void setLambda(real _lambda) {

lambda = _lambda;

rb = lambda * sigma;

79 updateAutoShift();

}

real getLambda() const {return lambda;}

84 void setSigma(real _sigma) {

sigma = _sigma;

updateAutoShift();

}

89 real getSigma() const {return sigma;}

void setA(real _a) {

a = _a * sigma;

updateAutoShift();

94 }

real getA() const {return a;}

real _computeEnergySqrRaw(real distSqr) const {

99 real r = sqrt(distSqr);

real energy = halfepsilon*(exp((sigma-r)/a)+tanh((r-rb)/a)-1);

return energy;

114 source code for the smooth square-well potential

}

104 bool _computeForceRaw(Real3D& force, const Real3D& dist, real ⤦

Ç distSqr) const {

real r = sqrt(distSqr);

real ffactor = ⤦

Ç -halfepsilon/r/a*(-exp((sigma-r)/a)+pow(cosh((r-rb)/a), ⤦

Ç -2));

force = dist * ffactor;

return true;

109 }

};

// provide pickle support

struct SmoothSquareWell_pickle : boost::python::pickle_suite

114 {

static

boost::python::tuple

getinitargs(SmoothSquareWell const& pot)

{

119 real eps;

real sig;

real rc;

real sh;

eps=pot.getEpsilon();

124 sig=pot.getSigma();

rc=pot.getCutoff();

sh=pot.getShift();

return boost::python::make_tuple(eps, sig, rc, sh);

}

129 };

}

}

134 #endif

Listing B.3: SmoothSquareWell.cpp

1 /*
Copyright (C) 2017,2018

Max Planck Institute for Polymer Research

This file is part of ESPResSo++.

6

ESPResSo++ is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

11

ESPResSo++ is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

16

You should have received a copy of the GNU General Public License

along with this program. If not, see <http://www.gnu.org/licenses/>.

source code for the smooth square-well potential 115

*/

21 #include "python.hpp"

#include "SmoothSquareWell.hpp"

#include "VerletListInteractionTemplate.hpp"

#include "FixedPairListInteractionTemplate.hpp"

#include "FixedPairListTypesInteractionTemplate.hpp"

26

namespace espressopp {

namespace interaction {

typedef class VerletListInteractionTemplate < SmoothSquareWell > ⤦

Ç VerletListSmoothSquareWell;

31 typedef class FixedPairListInteractionTemplate< SmoothSquareWell > ⤦

Ç FixedPairListSmoothSquareWell;

typedef class FixedPairListTypesInteractionTemplate< ⤦

Ç SmoothSquareWell > FixedPairListTypesSmoothSquareWell;

//

// REGISTRATION WITH PYTHON

36 //

void SmoothSquareWell::registerPython() {

using namespace espressopp::python;

class_ <SmoothSquareWell, bases <Potential> >

41 ("interaction_SmoothSquareWell", init< real, real, real >())

.def(init< real, real, real, real >())

.add_property("epsilon", &SmoothSquareWell::getEpsilon, ⤦

Ç &SmoothSquareWell::setEpsilon)

.add_property("sigma", &SmoothSquareWell::getSigma, ⤦

Ç &SmoothSquareWell::setSigma)

.add_property("Lambda", &SmoothSquareWell::getLambda, ⤦

Ç &SmoothSquareWell::setLambda)

46 .add_property("a", &SmoothSquareWell::getA, ⤦

Ç &SmoothSquareWell::setA)

.def_pickle(SmoothSquareWell_pickle())

;

class_ <VerletListSmoothSquareWell, bases <Interaction> >

51 ("interaction_VerletListSmoothSquareWell", init< ⤦

Ç shared_ptr<VerletList> >())

.def("getVerletList", &VerletListSmoothSquareWell::getVerletList)

.def("setPotential", ⤦

Ç &VerletListSmoothSquareWell::setPotential, ⤦

Ç return_value_policy< reference_existing_object >())

.def("getPotential", ⤦

Ç &VerletListSmoothSquareWell::getPotential, ⤦

Ç return_value_policy< reference_existing_object >())

;

56

class_ <FixedPairListSmoothSquareWell, bases <Interaction> >

("interaction_FixedPairListSmoothSquareWell",

init< shared_ptr<System>, shared_ptr<FixedPairList>, ⤦

Ç shared_ptr<SmoothSquareWell> >())

.def(init< shared_ptr<System>, ⤦

Ç shared_ptr<FixedPairListAdress>, ⤦

Ç shared_ptr<SmoothSquareWell> >())

116 source code for the smooth square-well potential

61 .def("setPotential", ⤦

Ç &FixedPairListSmoothSquareWell::setPotential)

.def("getPotential", ⤦

Ç &FixedPairListSmoothSquareWell::getPotential)

.def("setFixedPairList", ⤦

Ç &FixedPairListSmoothSquareWell::setFixedPairList)

.def("getFixedPairList", ⤦

Ç &FixedPairListSmoothSquareWell::getFixedPairList)

;

66

class_ <FixedPairListTypesSmoothSquareWell, bases <Interaction> >

("interaction_FixedPairListTypesSmoothSquareWell",

init< shared_ptr<System>, shared_ptr<FixedPairList> >())

.def(init< shared_ptr<System>, shared_ptr<FixedPairListAdress> ⤦

Ç >())

71 .def("setPotential", ⤦

Ç &FixedPairListTypesSmoothSquareWell::setPotential)

.def("getPotential", ⤦

Ç &FixedPairListTypesSmoothSquareWell::getPotentialPtr)

.def("setFixedPairList", ⤦

Ç &FixedPairListTypesSmoothSquareWell::setFixedPairList)

.def("getFixedPairList", ⤦

Ç &FixedPairListTypesSmoothSquareWell::getFixedPairList)

;

76 }

}

}

C S U P P O R T I N G I N F O R M AT I O N O F
S I N G L E - C H A I N S M O OT H
S Q U A R E -W E L L P O LY M E R

The following Python script is used to set up a MD simulation of the
single-chain square-well polymer with ESPResSo++.

Listing C.1: Python script used to set up the ESPResSo++ simulation of SCP

import time

2 import json

import glob

import argparse

import numpy as np

import espressopp

7 from espressopp import Real3D

PARSER = argparse.ArgumentParser()

PARSER.add_argument("--warm", help="Warm up the simulation", ⤦
Ç action="store_true", default=False)

PARSER.add_argument("--restart", help="Continue the prior simulation", ⤦
Ç action="store_true", default=False)

12 PARSER.add_argument("--jobid", help="Append file name of SystemMonitorCSV with ⤦
Ç the job ID", action="store")

ARGS = PARSER.parse_args()

WARM = ARGS.warm #

RESTART = ARGS.restart #

JOBID = ARGS.jobid #

17 RESTARTNUM = 5 #

CUTOFF = 1.5 #

SKIN = 0.3 #

TOPOFILE = "scp.conf" #

STEPSIZE = 0.0002 #

22 RUNSTEPS = 22000000 #

RESTARTFREQ = RUNSTEPS/RESTARTNUM

DUMPFREQ = 500 #

WARMSTEPS = 10000 #

WARMFREQ = 5000 #

27 SEED = 9487 #

TEMPERATURE = 0.438 #

GAMMA = 0.5 #

BOX = [] #

PARTICLES = [] #

32 BONDS = [] #

PROPS = [’id’, ’type’, ’mass’, ’pos’, ’v’]

EPSILON = 1.0

SIGMA = 1.0

vel_zero = Real3D(0.0, 0.0, 0.0)

37

def warmups():

print "Warming up starts"

for i in range(WARMSTEPS/WARMFREQ):

42 espressopp.tools.analyse.info(system, integrator)

integrator.run(WARMFREQ)

espressopp.tools.analyse.info(system, integrator)

print "Warming up ends"

117

118 supporting information of single-chain smooth square-well polymer

return

47

def runs():

dump_conf_xyz = espressopp.io.DumpXYZ(system, integrator, ⤦
Ç filename=’scp.xyz’, append=True)

ext_dump = espressopp.integrator.ExtAnalyze(dump_conf_xyz, DUMPFREQ)

52 integrator.addExtension(ext_dump)

system_monitor_csv = ⤦
Ç espressopp.analysis.SystemMonitorOutputCSV("thermo."+str(JOBID)+".csv")

system_monitor = espressopp.analysis.SystemMonitor(system, integrator, ⤦
Ç system_monitor_csv)

system_monitor.add_observable(’nonBond’, ⤦
Ç espressopp.analysis.PotentialEnergy(system, nonbondedInter))

system_monitor.add_observable(’Bond’, ⤦
Ç espressopp.analysis.PotentialEnergy(system, bondedInteraction))

57 system_monitor.add_observable(’temp’, espressopp.analysis.Temperature(system))

ext_analysis = espressopp.integrator.ExtAnalyze(system_monitor, DUMPFREQ)

integrator.addExtension(ext_analysis)

print "The run starts at", time.ctime()

start_time = time.clock()

62 integrator.run(RUNSTEPS)

end_time = time.clock()

espressopp.tools.analyse.final_info(system, integrator, verletList, ⤦
Ç start_time, end_time)

print "The run ends at", time.ctime()

print "save files needed for restart"

67 writerestart(integrator.step)

system.rng.saveState(integrator.step)

return

72 def readtopo():

global BOX

global PARTICLES

global BONDS

Lx, Ly, Lz, pids, ptypes, poss, vels, bonds, angels, dihedrals = ⤦
Ç espressopp.tools.io_extended.read(TOPOFILE, readVelocities=True)

77 BOX = [Lx, Ly, Lz]

for i, pid in enumerate(pids):

part = [pid, ptypes[i], 1.0, poss[i], vels[i]]

PARTICLES.append(part)

BONDS = [x[1] for x in bonds]

82 return

def readrestart():

global PARTICLES

87 global BOX

global BONDS

restartfiles = glob.glob("./restart.*")

steps = [int(f.rsplit(".", 1)[1]) for f in restartfiles]

finalrestart = restartfiles[steps.index(max(steps))]

92 with open(finalrestart, ’r’) as F:

restart = json.load(F)

step = restart["step"]

BOX = restart["box"]

npart = restart["particles"]["number"]

97 for i in range(npart):

partList = []

partList.append(restart["particles"][str(i+1)]["id"])

partList.append(restart["particles"][str(i+1)]["type"])

partList.append(restart["particles"][str(i+1)]["mass"])

102 partList.append(Real3D(restart["particles"][str(i+1)]["pos"]))

partList.append(Real3D(restart["particles"][str(i+1)]["v"]))

partList.append(Real3D(restart["particles"][str(i+1)]["f"]))

supporting information of single-chain smooth square-well polymer 119

PARTICLES.append(partList)

BONDS = restart["bonds"]

107 return step

def writerestart(step):

restart = {}

112 restart["step"] = step

restart["box"] = list(system.bc.boxL)

maxid = int(espressopp.analysis.MaxPID(system).compute())

restart["particles"] = {"number" : maxid}

for i in range(maxid):

117 p = system.storage.getParticle(i+1)

restart["particles"].update({i+1:{"id":p.id, "type":p.type, ⤦
Ç "mass":p.mass, "pos":list(p.pos), "v":list(p.v), "f":list(p.f)}})

restart["bonds"] = BONDS

restartfile = "restart." + str(step)

with open(restartfile, ’w’) as fp:

122 json.dump(restart, fp)

return

if RESTART:

127 STEP = readrestart()

else:

STEP = 0

readtopo()

132 system = espressopp.System()

system.rng = espressopp.esutil.RNG(SEED)

if RESTART:

system.rng.loadState("rng."+str(STEP))

system.bc = espressopp.bc.OrthorhombicBC(system.rng, BOX)

137 system.skin = SKIN

nodeGrid = espressopp.tools.decomp.nodeGrid(espressopp.MPI.COMM_WORLD.size)

cellGrid = espressopp.tools.decomp.cellGrid(BOX, nodeGrid, CUTOFF, SKIN)

system.storage = espressopp.storage.DomainDecomposition(system, nodeGrid, ⤦
Ç cellGrid)

if RESTART:

142 PROPS.append("f")

system.storage.addParticles(PARTICLES, *PROPS)

system.storage.decompose()

integrator = espressopp.integrator.VelocityVerlet(system)

147 integrator.step = STEP

integrator.dt = STEPSIZE

integrator.recalcForces = not RESTART

verletList = espressopp.VerletList(system, cutoff=CUTOFF)

verletList.exclude(BONDS)

152

if not WARM:

plumed = espressopp.integrator.ExtPlumed(system, "plumed.dat", ⤦
Ç log="log.plumed", dt=integrator.dt, restart=RESTART)

integrator.addExtension(plumed)

157 # thermostat

thermostat = espressopp.integrator.LangevinThermostat(system)

thermostat.gamma = GAMMA

thermostat.temperature = TEMPERATURE

integrator.addExtension(thermostat)

162

non-bonded interactions

pot = ⤦
Ç espressopp.interaction.SmoothSquareWell(epsilon=EPSILON,sigma=SIGMA,cutoff=CUTOFF)

pot.a = 0.002

pot.Lambda = 1.05

120 supporting information of single-chain smooth square-well polymer

167 nonbondedInter = espressopp.interaction.VerletListSmoothSquareWell(verletList)

nonbondedInter.setPotential(type1=1, type2=1, potential=pot)

system.addInteraction(nonbondedInter)

bonded interactions

172 bondPairList = espressopp.FixedPairList(system.storage)

bondPairList.addBonds(BONDS)

bondedPot = espressopp.interaction.Harmonic(K=10000, r0=1.0)

bondedInteraction = espressopp.interaction.FixedPairListHarmonic(system, ⤦
Ç bondPairList, bondedPot)

system.addInteraction(bondedInteraction)

177

if WARM:

warmups()

espressopp.tools.io_extended.write(TOPOFILE, system, writeVelocities=True)

else:

182 runs()

Listing C.2: plumed.dat file for well-tempered metadynamics simulation of
SCP

vim:ft=plumed

UNITS NATURAL

3 FLUSH STRIDE=5000

ene: ENERGY

UPPER_WALLS ARG=ene AT=5.0 KAPPA=2.5 LABEL=uwall

Q6 SPECIES=1-128 SWITCH={RATIONAL R_0=1.0 NN=12 D_MAX=1.85} VMEAN ⤦

Ç LABEL=q6

COMBINE ...

8 LABEL=rxc

PERIODIC=NO

ARG=ene,q6.vmean

COEFFICIENTS=-0.0187482044056,4.07430109214

... COMBINE

13 METAD ...

LABEL=metad

ARG=rxc

PACE=2000

HEIGHT=0.438

18 TEMP=0.438

BIASFACTOR=30

SIGMA=0.1

GRID_MIN=-1. GRID_MAX=20.0 GRID_BIN=1200

CALC_RCT

23 RCT_USTRIDE=1

FILE=HILLS

... METAD

PRINT ARG=ene,q6.vmean,rxc,uwall.bias,metad.* STRIDE=500 FILE=COLVAR

Listing C.3: R script for the standard error of Tco

reference: https://stats.stackexchange.com/a/486563

mydata <- read.table("crys.txt", header=TRUE)

fit <- lm(temperature ~ deltag, data=mydata)

4 fit$coefficients

X <- model.matrix(fit)

S <- solve(t(X) %*% X)

RMS <- summary(fit)$sigma^2

x_h <- matrix(c(1, 0), ncol = 1)

supporting information of single-chain smooth square-well polymer 121

9 y_h_se <- sqrt(RMS * (t(x_h) %*% S %*% x_h)); y_h_se

Listing C.4: crys.txt

1 "temperature" "deltag"

0.418 -10.01413485

0.438 0.186465697

0.458 15.84778002

D S U P P O R T I N G I N F O R M AT I O N
F O R C H A P T E R 4

d.1 seven lennard-jones particles

The following file is the plumed.dat file used for VES-PICV simulations
of the seven Lennard Jones particles.

Listing D.1: plumed.dat file for the VES-PICV simulation of 7 Lennard-Jones
Particles

1 # vim:ft=plumed

UNITS NATURAL

FLUSH STRIDE=500

6 energy: ENERGY

com: COM ATOMS=1-7

d1: DISTANCE ATOMS=1,com

d2: DISTANCE ATOMS=2,com

11 d3: DISTANCE ATOMS=3,com

d4: DISTANCE ATOMS=4,com

d5: DISTANCE ATOMS=5,com

d6: DISTANCE ATOMS=6,com

d7: DISTANCE ATOMS=7,com

16

uw_d1: UPPER_WALLS ARG=d1 AT=2.0 KAPPA=1000.

uw_d2: UPPER_WALLS ARG=d2 AT=2.0 KAPPA=1000.

uw_d3: UPPER_WALLS ARG=d3 AT=2.0 KAPPA=1000.

uw_d4: UPPER_WALLS ARG=d4 AT=2.0 KAPPA=1000.

21 uw_d5: UPPER_WALLS ARG=d5 AT=2.0 KAPPA=1000.

uw_d6: UPPER_WALLS ARG=d6 AT=2.0 KAPPA=1000.

uw_d7: UPPER_WALLS ARG=d7 AT=2.0 KAPPA=1000.

c1: COORDINATION GROUPA=1 GROUPB=2,3,4,5,6,7 SWITCH={RATIONAL R_0=1.5 ⤦

Ç NN=8 MM=16}

26 c2: COORDINATION GROUPA=2 GROUPB=1,3,4,5,6,7 SWITCH={RATIONAL R_0=1.5 ⤦

Ç NN=8 MM=16}

c3: COORDINATION GROUPA=3 GROUPB=1,2,4,5,6,7 SWITCH={RATIONAL R_0=1.5 ⤦

Ç NN=8 MM=16}

c4: COORDINATION GROUPA=4 GROUPB=1,2,3,5,6,7 SWITCH={RATIONAL R_0=1.5 ⤦

Ç NN=8 MM=16}

c5: COORDINATION GROUPA=5 GROUPB=1,2,3,4,6,7 SWITCH={RATIONAL R_0=1.5 ⤦

Ç NN=8 MM=16}

c6: COORDINATION GROUPA=6 GROUPB=1,2,3,4,5,7 SWITCH={RATIONAL R_0=1.5 ⤦

Ç NN=8 MM=16}

31 c7: COORDINATION GROUPA=7 GROUPB=1,2,3,4,5,6 SWITCH={RATIONAL R_0=1.5 ⤦

Ç NN=8 MM=16}

123

124 supporting information for chapter 4

cn: COORDINATIONNUMBER SPECIES=1-7 MEAN MOMENTS=2-4 SWITCH={RATIONAL ⤦

Ç R_0=1.5 NN=8 MM=16}

lw_cn_m2: LOWER_WALLS ARG=cn.moment-2 AT=0.4 KAPPA=1000.

36 uw_cn_m2: UPPER_WALLS ARG=cn.moment-2 AT=1.2 KAPPA=1000.

lw_cn_m3: LOWER_WALLS ARG=cn.moment-3 AT=-0.3 KAPPA=1000.

bf1: BF_LEGENDRE ORDER=20 MINIMUM=1.0 MAXIMUM=6.0

41 td1: TD_WELLTEMPERED BIASFACTOR=3

VES_LINEAR_EXPANSION_MULTIPLE_IDENTICAL_CVS ...

ARG_SET1=c1

ARG_SET2=c2

46 ARG_SET3=c3

ARG_SET4=c4

ARG_SET5=c5

ARG_SET6=c6

ARG_SET7=c7

51 BASIS_FUNCTIONS=bf1

TARGET_DISTRIBUTION=td1

LABEL=ves1

TEMP=0.2

GRID_BINS=100

56 ... VES_LINEAR_EXPANSION_MULTIPLE_IDENTICAL_CVS

OPT_AVERAGED_SGD ...

BIAS=ves1

STRIDE=500

61 LABEL=o1

STEPSIZE=0.1

COEFFS_FILE=coeffs.data

COEFFS_OUTPUT=100

FES_OUTPUT=500

66 BIAS_OUTPUT=500

TARGETDIST_STRIDE=500

... OPT_AVERAGED_SGD

71 PRINT ...

ARG=energy,cn.*,ves1.*
STRIDE=500

FILE=colvar.data

... PRINT

76

PRINT ...

ARG=energy,c1,c2,c3,c4,c5,c6,c7,ves1.*
STRIDE=500

FILE=colvar.cn-particles.data

81 ... PRINT

PRINT ...

ARG=cn.moment-2,cn.moment-3,lw_cn_m2.bias,uw_cn_m2.bias,lw_cn_m3.bias

STRIDE=500

86 FILE=colvar.cn-walls.data

... PRINT

D.2 bulk sodium 125

d.2 bulk sodium

The plumed.dat file used for the VES-PICV simulations of bulk sodium
is shown below.

Listing D.2: plumed.dat file for the VES-PICV simulation of bulk sodium

vim:ft=plumed

2 UNITS LENGTH=A

FLUSH STRIDE=10000

ene: ENERGY

cmat: CONTACT_MATRIX GROUP=1-250 SWITCH={RATIONAL R_0=5 NN=12 ⤦

Ç D_MAX=8.6} COMPONENTS

7

ee: ENVIRONMENT ...

WEIGHT=cmat.w VECTORS1=cmat.x VECTORS2=cmat.y VECTORS3=cmat.z

SIGMA=0.65 REFERENCE=ref2.pdb

...

12

q6: Q6 SPECIES=1-250 SWITCH={RATIONAL R_0=5 NN=12 D_MAX=8.6} VMEAN

bf1: BF_LEGENDRE ORDER=20 MINIMUM=0.1 MAXIMUM=0.85

17 td1: TD_WELLTEMPERED BIASFACTOR=1.2

VES_LINEAR_EXPANSION ...

ARG=ee

BASIS_FUNCTIONS=bf1

22 TARGET_DISTRIBUTION=td1

LABEL=ves1

TEMP=380

GRID_BINS=100

... VES_LINEAR_EXPANSION

27

OPT_ADAM ...

BIAS=ves1

STRIDE=500

LABEL=o1

32 STEPSIZE=0.0005

COEFFS_FILE=coeffs.data

COEFFS_OUTPUT=50

FES_OUTPUT=500

BIAS_OUTPUT=500

37 TARGETDIST_STRIDE=500

MULTIPLE_WALKERS

... OPT_ADAM

PRINT ARG=ene,q6_vmean,ves1.* STRIDE=500 FILE=colvar-en.data

42 PRINT ARG=ee STRIDE=500 FILE=colvar-ee.dat

DUMPATOMS STRIDE=500 FILE=run.xyz ATOMS=1-250

126 supporting information for chapter 4

0

0.15

0.3

0.45

0 5 10 15 20

Q
6

Time [ns]

(a) walker 2

0

50

100

150

200

250

0 5 10 15 20

n
s

Time [ns]

(b) walker 2

0

0.15

0.3

0.45

0 5 10 15 20

Q
6

Time [ns]

(c) walker 3

0

50

100

150

200

250

0 5 10 15 20

n
s

Time [ns]

(d) walker 3

0

0.15

0.3

0.45

0 5 10 15 20

Q
6

Time [ns]

(e) walker 4

0

50

100

150

200

250

0 5 10 15 20

n
s

Time [ns]

(f) walker 4

0

0.15

0.3

0.45

0 5 10 15 20

Q
6

Time [ns]

(g) walker 5

0

50

100

150

200

250

0 5 10 15 20

n
s

Time [ns]

(h) walker 5

D.2 bulk sodium 127

0

0.15

0.3

0.45

0 5 10 15 20

Q
6

Time [ns]

(i) walker 6

0

50

100

150

200

250

0 5 10 15 20
n
s

Time [ns]

(j) walker 6

0

0.15

0.3

0.45

0 5 10 15 20

Q
6

Time [ns]

(k) walker 7

0

50

100

150

200

250

0 5 10 15 20

n
s

Time [ns]

(l) walker 7

0

0.15

0.3

0.45

0 5 10 15 20

Q
6

Time [ns]

(m) walker 8

0

50

100

150

200

250

0 5 10 15 20

n
s

Time [ns]

(n) walker 8

Figure D.1: The time series of the number of solid atoms ns and Q6 of
walkers 2-8.

E I N P U T F I L E S F O R P L U M E D I N
S I M U L AT I O N S O F I C E A N D U R E A

e.1 ice ih

One of the plumed.dat files used in the multiple-walker VES-PICV
simulations of ice nucleation is listed below.

Listing E.1: plumed.dat file for the VES-PICV simulations of ice Ih

vim:ft=plumed

2

vol: VOLUME

Q6 SPECIES=1-864:3 SWITCH={RATIONAL R_0=0.3 D_MAX=0.35} VMEAN LABEL=q6

cmat: CONTACT_MATRIX GROUP=1-864:3 SWITCH={RATIONAL R_0=1.000 NN=12 ⤦
Ç D_MAX=1.500} COMPONENTS

7

ENVIRONMENT ...

LABEL=refcv1

WEIGHT=cmat.w VECTORS1=cmat.x VECTORS2=cmat.y VECTORS3=cmat.z

REFERENCE=./Environments/IceIhExtendedEnvironments/env1.pdb

12 SIGMA=0.055

... ENVIRONMENT

ENVIRONMENT ...

LABEL=refcv2

17 WEIGHT=cmat.w VECTORS1=cmat.x VECTORS2=cmat.y VECTORS3=cmat.z

REFERENCE=./Environments/IceIhExtendedEnvironments/env2.pdb

SIGMA=0.055

... ENVIRONMENT

22 ENVIRONMENT ...

LABEL=refcv3

WEIGHT=cmat.w VECTORS1=cmat.x VECTORS2=cmat.y VECTORS3=cmat.z

REFERENCE=./Environments/IceIhExtendedEnvironments/env3.pdb

SIGMA=0.055

27 ... ENVIRONMENT

ENVIRONMENT ...

LABEL=refcv4

WEIGHT=cmat.w VECTORS1=cmat.x VECTORS2=cmat.y VECTORS3=cmat.z

32 REFERENCE=./Environments/IceIhExtendedEnvironments/env4.pdb

SIGMA=0.055

... ENVIRONMENT

ENVIRONMENT ...

37 LABEL=refcv5

WEIGHT=cmat.w VECTORS1=cmat.x VECTORS2=cmat.y VECTORS3=cmat.z

REFERENCE=./Environments/IceIcExtendedEnvironments/env1.pdb

SIGMA=0.055

... ENVIRONMENT

42

ENVIRONMENT ...

LABEL=refcv6

WEIGHT=cmat.w VECTORS1=cmat.x VECTORS2=cmat.y VECTORS3=cmat.z

REFERENCE=./Environments/IceIcExtendedEnvironments/env2.pdb

129

130 input files for plumed in simulations of ice and urea

47 SIGMA=0.055

... ENVIRONMENT

CUSTOM ...

ARG1=refcv1

52 ARG2=refcv2

ARG3=refcv3

ARG4=refcv4

VAR=k1,k2,k3,k4

FUNC=(0.01*log(exp(100*k1)+exp(100*k2)+exp(100*k3)+exp(100*k4)))

57 PERIODIC=NO

LABEL=kx1

... CUSTOM

CUSTOM ...

62 ARG1=refcv4

ARG2=refcv5

VAR=k1,k2

FUNC=(0.01*log(exp(100*k1)+exp(100*k2)))

PERIODIC=NO

67 LABEL=kx2

... CUSTOM

MORE_THAN ARG=kx1 R_0=0.5 NN=12 LABEL=si1

s1morethan: COMBINE ARG=si1 PERIODIC=NO

72 s1mean: COMBINE ARG=kx1 PERIODIC=NO NORMALIZE

MORE_THAN ARG=kx2 R_0=0.39 NN=12 LABEL=si2

s2morethan: COMBINE ARG=si2 PERIODIC=NO

s2mean: COMBINE ARG=kx2 PERIODIC=NO NORMALIZE

77

diff1: CUSTOM ARG1=s2mean ARG2=s1mean ⤦
Ç FUNC=((x-0.26)/(0.58-0.26)-(y-0.29)/(0.80-0.29)) PERIODIC=NO

UPPER_WALLS ARG=diff1 AT=0.04 KAPPA=100000 EXP=2 LABEL=uwall1

diff2: CUSTOM ARG1=q6_vmean ARG2=s1mean ⤦
Ç FUNC=((x-0.0668781995)/(0.39184059-0.0668781995) - ⤦
Ç (y-0.2899390548628429)/(0.7838534089775562-0.2899390548628429)) ⤦
Ç PERIODIC=NO

82 UPPER_WALLS ARG=diff2 AT=0.06 KAPPA=50000 EXP=2 LABEL=uwall2

basis functions and the target distribution

bf1: BF_LEGENDRE ORDER=20 MINIMUM=0.15 MAXIMUM=0.95

td1: TD_WELLTEMPERED BIASFACTOR=2

87

VES_LINEAR_EXPANSION ...

LABEL=ves1

ARG=kx1

BASIS_FUNCTIONS=bf1

92 TARGET_DISTRIBUTION=td1

TEMP=280

GRID_BINS=100

... VES_LINEAR_EXPANSION

97 OPT_AVERAGED_SGD ...

BIAS=ves1

STRIDE=500

LABEL=o1

STEPSIZE=2.0

102 FES_OUTPUT=500

BIAS_OUTPUT=500

COEFFS_FILE=coeffs.data

COEFFS_OUTPUT=25

TARGETDIST_STRIDE=250

107 MULTIPLE_WALKERS

... OPT_AVERAGED_SGD

E.2 urea 131

PRINT ARG=kx1 STRIDE=500 FILE=colvar-kx1.dat

PRINT ARG=kx2 STRIDE=500 FILE=colvar-kx2.dat

112 PRINT ⤦
Ç ARG=vol,q6_vmean,s1mean,s1morethan,s2mean,s2morethan,diff1,uwall1.*,diff2,uwall2.*,ves1.* ⤦
Ç STRIDE=500 FILE=colvar-ves.dat

e.2 urea

The following file is one of the plumed.dat files used in the VES-PICV
simulations of urea.

Listing E.2: plumed.dat file for the VES-PICV simulations of urea

vim:ft=plumed

3 vol: VOLUME

ene: ENERGY

NC1: CENTER ATOMS=3,6 MASS

NC2: CENTER ATOMS=11,14 MASS

8 NC3: CENTER ATOMS=19,22 MASS

NC4: CENTER ATOMS=27,30 MASS

NC5: CENTER ATOMS=35,38 MASS

NC6: CENTER ATOMS=43,46 MASS

NC7: CENTER ATOMS=51,54 MASS

13 NC8: CENTER ATOMS=59,62 MASS

NC9: CENTER ATOMS=67,70 MASS

NC10: CENTER ATOMS=75,78 MASS

NC11: CENTER ATOMS=83,86 MASS

NC12: CENTER ATOMS=91,94 MASS

18 NC13: CENTER ATOMS=99,102 MASS

NC14: CENTER ATOMS=107,110 MASS

NC15: CENTER ATOMS=115,118 MASS

NC16: CENTER ATOMS=123,126 MASS

NC17: CENTER ATOMS=131,134 MASS

23 NC18: CENTER ATOMS=139,142 MASS

NC19: CENTER ATOMS=147,150 MASS

NC20: CENTER ATOMS=155,158 MASS

NC21: CENTER ATOMS=163,166 MASS

NC22: CENTER ATOMS=171,174 MASS

28 NC23: CENTER ATOMS=179,182 MASS

NC24: CENTER ATOMS=187,190 MASS

NC25: CENTER ATOMS=195,198 MASS

NC26: CENTER ATOMS=203,206 MASS

NC27: CENTER ATOMS=211,214 MASS

33 NC28: CENTER ATOMS=219,222 MASS

NC29: CENTER ATOMS=227,230 MASS

NC30: CENTER ATOMS=235,238 MASS

NC31: CENTER ATOMS=243,246 MASS

NC32: CENTER ATOMS=251,254 MASS

38 NC33: CENTER ATOMS=259,262 MASS

NC34: CENTER ATOMS=267,270 MASS

NC35: CENTER ATOMS=275,278 MASS

NC36: CENTER ATOMS=283,286 MASS

NC37: CENTER ATOMS=291,294 MASS

43 NC38: CENTER ATOMS=299,302 MASS

NC39: CENTER ATOMS=307,310 MASS

NC40: CENTER ATOMS=315,318 MASS

NC41: CENTER ATOMS=323,326 MASS

NC42: CENTER ATOMS=331,334 MASS

48 NC43: CENTER ATOMS=339,342 MASS

132 input files for plumed in simulations of ice and urea

NC44: CENTER ATOMS=347,350 MASS

NC45: CENTER ATOMS=355,358 MASS

NC46: CENTER ATOMS=363,366 MASS

NC47: CENTER ATOMS=371,374 MASS

53 NC48: CENTER ATOMS=379,382 MASS

NC49: CENTER ATOMS=387,390 MASS

NC50: CENTER ATOMS=395,398 MASS

NC51: CENTER ATOMS=403,406 MASS

NC52: CENTER ATOMS=411,414 MASS

58 NC53: CENTER ATOMS=419,422 MASS

NC54: CENTER ATOMS=427,430 MASS

NC55: CENTER ATOMS=435,438 MASS

NC56: CENTER ATOMS=443,446 MASS

NC57: CENTER ATOMS=451,454 MASS

63 NC58: CENTER ATOMS=459,462 MASS

NC59: CENTER ATOMS=467,470 MASS

NC60: CENTER ATOMS=475,478 MASS

NC61: CENTER ATOMS=483,486 MASS

NC62: CENTER ATOMS=491,494 MASS

68 NC63: CENTER ATOMS=499,502 MASS

NC64: CENTER ATOMS=507,510 MASS

NC65: CENTER ATOMS=515,518 MASS

NC66: CENTER ATOMS=523,526 MASS

NC67: CENTER ATOMS=531,534 MASS

73 NC68: CENTER ATOMS=539,542 MASS

NC69: CENTER ATOMS=547,550 MASS

NC70: CENTER ATOMS=555,558 MASS

NC71: CENTER ATOMS=563,566 MASS

NC72: CENTER ATOMS=571,574 MASS

78 NC73: CENTER ATOMS=579,582 MASS

NC74: CENTER ATOMS=587,590 MASS

NC75: CENTER ATOMS=595,598 MASS

NC76: CENTER ATOMS=603,606 MASS

NC77: CENTER ATOMS=611,614 MASS

83 NC78: CENTER ATOMS=619,622 MASS

NC79: CENTER ATOMS=627,630 MASS

NC80: CENTER ATOMS=635,638 MASS

NC81: CENTER ATOMS=643,646 MASS

NC82: CENTER ATOMS=651,654 MASS

88 NC83: CENTER ATOMS=659,662 MASS

NC84: CENTER ATOMS=667,670 MASS

NC85: CENTER ATOMS=675,678 MASS

NC86: CENTER ATOMS=683,686 MASS

NC87: CENTER ATOMS=691,694 MASS

93 NC88: CENTER ATOMS=699,702 MASS

NC89: CENTER ATOMS=707,710 MASS

NC90: CENTER ATOMS=715,718 MASS

NC91: CENTER ATOMS=723,726 MASS

NC92: CENTER ATOMS=731,734 MASS

98 NC93: CENTER ATOMS=739,742 MASS

NC94: CENTER ATOMS=747,750 MASS

NC95: CENTER ATOMS=755,758 MASS

NC96: CENTER ATOMS=763,766 MASS

NC97: CENTER ATOMS=771,774 MASS

103 NC98: CENTER ATOMS=779,782 MASS

NC99: CENTER ATOMS=787,790 MASS

NC100: CENTER ATOMS=795,798 MASS

NC101: CENTER ATOMS=803,806 MASS

NC102: CENTER ATOMS=811,814 MASS

108 NC103: CENTER ATOMS=819,822 MASS

NC104: CENTER ATOMS=827,830 MASS

NC105: CENTER ATOMS=835,838 MASS

NC106: CENTER ATOMS=843,846 MASS

NC107: CENTER ATOMS=851,854 MASS

113 NC108: CENTER ATOMS=859,862 MASS

NC109: CENTER ATOMS=867,870 MASS

E.2 urea 133

NC110: CENTER ATOMS=875,878 MASS

NC111: CENTER ATOMS=883,886 MASS

NC112: CENTER ATOMS=891,894 MASS

118 NC113: CENTER ATOMS=899,902 MASS

NC114: CENTER ATOMS=907,910 MASS

NC115: CENTER ATOMS=915,918 MASS

NC116: CENTER ATOMS=923,926 MASS

NC117: CENTER ATOMS=931,934 MASS

123 NC118: CENTER ATOMS=939,942 MASS

NC119: CENTER ATOMS=947,950 MASS

NC120: CENTER ATOMS=955,958 MASS

NC121: CENTER ATOMS=963,966 MASS

NC122: CENTER ATOMS=971,974 MASS

128 NC123: CENTER ATOMS=979,982 MASS

NC124: CENTER ATOMS=987,990 MASS

NC125: CENTER ATOMS=995,998 MASS

NC126: CENTER ATOMS=1003,1006 MASS

NC127: CENTER ATOMS=1011,1014 MASS

133 NC128: CENTER ATOMS=1019,1022 MASS

CO1: CENTER ATOMS=1,2 MASS

CO2: CENTER ATOMS=9,10 MASS

CO3: CENTER ATOMS=17,18 MASS

138 CO4: CENTER ATOMS=25,26 MASS

CO5: CENTER ATOMS=33,34 MASS

CO6: CENTER ATOMS=41,42 MASS

CO7: CENTER ATOMS=49,50 MASS

CO8: CENTER ATOMS=57,58 MASS

143 CO9: CENTER ATOMS=65,66 MASS

CO10: CENTER ATOMS=73,74 MASS

CO11: CENTER ATOMS=81,82 MASS

CO12: CENTER ATOMS=89,90 MASS

CO13: CENTER ATOMS=97,98 MASS

148 CO14: CENTER ATOMS=105,106 MASS

CO15: CENTER ATOMS=113,114 MASS

CO16: CENTER ATOMS=121,122 MASS

CO17: CENTER ATOMS=129,130 MASS

CO18: CENTER ATOMS=137,138 MASS

153 CO19: CENTER ATOMS=145,146 MASS

CO20: CENTER ATOMS=153,154 MASS

CO21: CENTER ATOMS=161,162 MASS

CO22: CENTER ATOMS=169,170 MASS

CO23: CENTER ATOMS=177,178 MASS

158 CO24: CENTER ATOMS=185,186 MASS

CO25: CENTER ATOMS=193,194 MASS

CO26: CENTER ATOMS=201,202 MASS

CO27: CENTER ATOMS=209,210 MASS

CO28: CENTER ATOMS=217,218 MASS

163 CO29: CENTER ATOMS=225,226 MASS

CO30: CENTER ATOMS=233,234 MASS

CO31: CENTER ATOMS=241,242 MASS

CO32: CENTER ATOMS=249,250 MASS

CO33: CENTER ATOMS=257,258 MASS

168 CO34: CENTER ATOMS=265,266 MASS

CO35: CENTER ATOMS=273,274 MASS

CO36: CENTER ATOMS=281,282 MASS

CO37: CENTER ATOMS=289,290 MASS

CO38: CENTER ATOMS=297,298 MASS

173 CO39: CENTER ATOMS=305,306 MASS

CO40: CENTER ATOMS=313,314 MASS

CO41: CENTER ATOMS=321,322 MASS

CO42: CENTER ATOMS=329,330 MASS

CO43: CENTER ATOMS=337,338 MASS

178 CO44: CENTER ATOMS=345,346 MASS

CO45: CENTER ATOMS=353,354 MASS

CO46: CENTER ATOMS=361,362 MASS

134 input files for plumed in simulations of ice and urea

CO47: CENTER ATOMS=369,370 MASS

CO48: CENTER ATOMS=377,378 MASS

183 CO49: CENTER ATOMS=385,386 MASS

CO50: CENTER ATOMS=393,394 MASS

CO51: CENTER ATOMS=401,402 MASS

CO52: CENTER ATOMS=409,410 MASS

CO53: CENTER ATOMS=417,418 MASS

188 CO54: CENTER ATOMS=425,426 MASS

CO55: CENTER ATOMS=433,434 MASS

CO56: CENTER ATOMS=441,442 MASS

CO57: CENTER ATOMS=449,450 MASS

CO58: CENTER ATOMS=457,458 MASS

193 CO59: CENTER ATOMS=465,466 MASS

CO60: CENTER ATOMS=473,474 MASS

CO61: CENTER ATOMS=481,482 MASS

CO62: CENTER ATOMS=489,490 MASS

CO63: CENTER ATOMS=497,498 MASS

198 CO64: CENTER ATOMS=505,506 MASS

CO65: CENTER ATOMS=513,514 MASS

CO66: CENTER ATOMS=521,522 MASS

CO67: CENTER ATOMS=529,530 MASS

CO68: CENTER ATOMS=537,538 MASS

203 CO69: CENTER ATOMS=545,546 MASS

CO70: CENTER ATOMS=553,554 MASS

CO71: CENTER ATOMS=561,562 MASS

CO72: CENTER ATOMS=569,570 MASS

CO73: CENTER ATOMS=577,578 MASS

208 CO74: CENTER ATOMS=585,586 MASS

CO75: CENTER ATOMS=593,594 MASS

CO76: CENTER ATOMS=601,602 MASS

CO77: CENTER ATOMS=609,610 MASS

CO78: CENTER ATOMS=617,618 MASS

213 CO79: CENTER ATOMS=625,626 MASS

CO80: CENTER ATOMS=633,634 MASS

CO81: CENTER ATOMS=641,642 MASS

CO82: CENTER ATOMS=649,650 MASS

CO83: CENTER ATOMS=657,658 MASS

218 CO84: CENTER ATOMS=665,666 MASS

CO85: CENTER ATOMS=673,674 MASS

CO86: CENTER ATOMS=681,682 MASS

CO87: CENTER ATOMS=689,690 MASS

CO88: CENTER ATOMS=697,698 MASS

223 CO89: CENTER ATOMS=705,706 MASS

CO90: CENTER ATOMS=713,714 MASS

CO91: CENTER ATOMS=721,722 MASS

CO92: CENTER ATOMS=729,730 MASS

CO93: CENTER ATOMS=737,738 MASS

228 CO94: CENTER ATOMS=745,746 MASS

CO95: CENTER ATOMS=753,754 MASS

CO96: CENTER ATOMS=761,762 MASS

CO97: CENTER ATOMS=769,770 MASS

CO98: CENTER ATOMS=777,778 MASS

233 CO99: CENTER ATOMS=785,786 MASS

CO100: CENTER ATOMS=793,794 MASS

CO101: CENTER ATOMS=801,802 MASS

CO102: CENTER ATOMS=809,810 MASS

CO103: CENTER ATOMS=817,818 MASS

238 CO104: CENTER ATOMS=825,826 MASS

CO105: CENTER ATOMS=833,834 MASS

CO106: CENTER ATOMS=841,842 MASS

CO107: CENTER ATOMS=849,850 MASS

CO108: CENTER ATOMS=857,858 MASS

243 CO109: CENTER ATOMS=865,866 MASS

CO110: CENTER ATOMS=873,874 MASS

CO111: CENTER ATOMS=881,882 MASS

CO112: CENTER ATOMS=889,890 MASS

E.2 urea 135

CO113: CENTER ATOMS=897,898 MASS

248 CO114: CENTER ATOMS=905,906 MASS

CO115: CENTER ATOMS=913,914 MASS

CO116: CENTER ATOMS=921,922 MASS

CO117: CENTER ATOMS=929,930 MASS

CO118: CENTER ATOMS=937,938 MASS

253 CO119: CENTER ATOMS=945,946 MASS

CO120: CENTER ATOMS=953,954 MASS

CO121: CENTER ATOMS=961,962 MASS

CO122: CENTER ATOMS=969,970 MASS

CO123: CENTER ATOMS=977,978 MASS

258 CO124: CENTER ATOMS=985,986 MASS

CO125: CENTER ATOMS=993,994 MASS

CO126: CENTER ATOMS=1001,1002 MASS

CO127: CENTER ATOMS=1009,1010 MASS

CO128: CENTER ATOMS=1017,1018 MASS

263

m1: DISTANCE ...

ATOMS1=CO1,NC1 LOCATION1=CO1

ATOMS2=CO2,NC2 LOCATION2=CO2

ATOMS3=CO3,NC3 LOCATION3=CO3

268 ATOMS4=CO4,NC4 LOCATION4=CO4

ATOMS5=CO5,NC5 LOCATION5=CO5

ATOMS6=CO6,NC6 LOCATION6=CO6

ATOMS7=CO7,NC7 LOCATION7=CO7

ATOMS8=CO8,NC8 LOCATION8=CO8

273 ATOMS9=CO9,NC9 LOCATION9=CO9

ATOMS10=CO10,NC10 LOCATION10=CO10

ATOMS11=CO11,NC11 LOCATION11=CO11

ATOMS12=CO12,NC12 LOCATION12=CO12

ATOMS13=CO13,NC13 LOCATION13=CO13

278 ATOMS14=CO14,NC14 LOCATION14=CO14

ATOMS15=CO15,NC15 LOCATION15=CO15

ATOMS16=CO16,NC16 LOCATION16=CO16

ATOMS17=CO17,NC17 LOCATION17=CO17

ATOMS18=CO18,NC18 LOCATION18=CO18

283 ATOMS19=CO19,NC19 LOCATION19=CO19

ATOMS20=CO20,NC20 LOCATION20=CO20

ATOMS21=CO21,NC21 LOCATION21=CO21

ATOMS22=CO22,NC22 LOCATION22=CO22

ATOMS23=CO23,NC23 LOCATION23=CO23

288 ATOMS24=CO24,NC24 LOCATION24=CO24

ATOMS25=CO25,NC25 LOCATION25=CO25

ATOMS26=CO26,NC26 LOCATION26=CO26

ATOMS27=CO27,NC27 LOCATION27=CO27

ATOMS28=CO28,NC28 LOCATION28=CO28

293 ATOMS29=CO29,NC29 LOCATION29=CO29

ATOMS30=CO30,NC30 LOCATION30=CO30

ATOMS31=CO31,NC31 LOCATION31=CO31

ATOMS32=CO32,NC32 LOCATION32=CO32

ATOMS33=CO33,NC33 LOCATION33=CO33

298 ATOMS34=CO34,NC34 LOCATION34=CO34

ATOMS35=CO35,NC35 LOCATION35=CO35

ATOMS36=CO36,NC36 LOCATION36=CO36

ATOMS37=CO37,NC37 LOCATION37=CO37

ATOMS38=CO38,NC38 LOCATION38=CO38

303 ATOMS39=CO39,NC39 LOCATION39=CO39

ATOMS40=CO40,NC40 LOCATION40=CO40

ATOMS41=CO41,NC41 LOCATION41=CO41

ATOMS42=CO42,NC42 LOCATION42=CO42

ATOMS43=CO43,NC43 LOCATION43=CO43

308 ATOMS44=CO44,NC44 LOCATION44=CO44

ATOMS45=CO45,NC45 LOCATION45=CO45

ATOMS46=CO46,NC46 LOCATION46=CO46

ATOMS47=CO47,NC47 LOCATION47=CO47

ATOMS48=CO48,NC48 LOCATION48=CO48

136 input files for plumed in simulations of ice and urea

313 ATOMS49=CO49,NC49 LOCATION49=CO49

ATOMS50=CO50,NC50 LOCATION50=CO50

ATOMS51=CO51,NC51 LOCATION51=CO51

ATOMS52=CO52,NC52 LOCATION52=CO52

ATOMS53=CO53,NC53 LOCATION53=CO53

318 ATOMS54=CO54,NC54 LOCATION54=CO54

ATOMS55=CO55,NC55 LOCATION55=CO55

ATOMS56=CO56,NC56 LOCATION56=CO56

ATOMS57=CO57,NC57 LOCATION57=CO57

ATOMS58=CO58,NC58 LOCATION58=CO58

323 ATOMS59=CO59,NC59 LOCATION59=CO59

ATOMS60=CO60,NC60 LOCATION60=CO60

ATOMS61=CO61,NC61 LOCATION61=CO61

ATOMS62=CO62,NC62 LOCATION62=CO62

ATOMS63=CO63,NC63 LOCATION63=CO63

328 ATOMS64=CO64,NC64 LOCATION64=CO64

ATOMS65=CO65,NC65 LOCATION65=CO65

ATOMS66=CO66,NC66 LOCATION66=CO66

ATOMS67=CO67,NC67 LOCATION67=CO67

ATOMS68=CO68,NC68 LOCATION68=CO68

333 ATOMS69=CO69,NC69 LOCATION69=CO69

ATOMS70=CO70,NC70 LOCATION70=CO70

ATOMS71=CO71,NC71 LOCATION71=CO71

ATOMS72=CO72,NC72 LOCATION72=CO72

ATOMS73=CO73,NC73 LOCATION73=CO73

338 ATOMS74=CO74,NC74 LOCATION74=CO74

ATOMS75=CO75,NC75 LOCATION75=CO75

ATOMS76=CO76,NC76 LOCATION76=CO76

ATOMS77=CO77,NC77 LOCATION77=CO77

ATOMS78=CO78,NC78 LOCATION78=CO78

343 ATOMS79=CO79,NC79 LOCATION79=CO79

ATOMS80=CO80,NC80 LOCATION80=CO80

ATOMS81=CO81,NC81 LOCATION81=CO81

ATOMS82=CO82,NC82 LOCATION82=CO82

ATOMS83=CO83,NC83 LOCATION83=CO83

348 ATOMS84=CO84,NC84 LOCATION84=CO84

ATOMS85=CO85,NC85 LOCATION85=CO85

ATOMS86=CO86,NC86 LOCATION86=CO86

ATOMS87=CO87,NC87 LOCATION87=CO87

ATOMS88=CO88,NC88 LOCATION88=CO88

353 ATOMS89=CO89,NC89 LOCATION89=CO89

ATOMS90=CO90,NC90 LOCATION90=CO90

ATOMS91=CO91,NC91 LOCATION91=CO91

ATOMS92=CO92,NC92 LOCATION92=CO92

ATOMS93=CO93,NC93 LOCATION93=CO93

358 ATOMS94=CO94,NC94 LOCATION94=CO94

ATOMS95=CO95,NC95 LOCATION95=CO95

ATOMS96=CO96,NC96 LOCATION96=CO96

ATOMS97=CO97,NC97 LOCATION97=CO97

ATOMS98=CO98,NC98 LOCATION98=CO98

363 ATOMS99=CO99,NC99 LOCATION99=CO99

ATOMS100=CO100,NC100 LOCATION100=CO100

ATOMS101=CO101,NC101 LOCATION101=CO101

ATOMS102=CO102,NC102 LOCATION102=CO102

ATOMS103=CO103,NC103 LOCATION103=CO103

368 ATOMS104=CO104,NC104 LOCATION104=CO104

ATOMS105=CO105,NC105 LOCATION105=CO105

ATOMS106=CO106,NC106 LOCATION106=CO106

ATOMS107=CO107,NC107 LOCATION107=CO107

ATOMS108=CO108,NC108 LOCATION108=CO108

373 ATOMS109=CO109,NC109 LOCATION109=CO109

ATOMS110=CO110,NC110 LOCATION110=CO110

ATOMS111=CO111,NC111 LOCATION111=CO111

ATOMS112=CO112,NC112 LOCATION112=CO112

ATOMS113=CO113,NC113 LOCATION113=CO113

378 ATOMS114=CO114,NC114 LOCATION114=CO114

E.2 urea 137

ATOMS115=CO115,NC115 LOCATION115=CO115

ATOMS116=CO116,NC116 LOCATION116=CO116

ATOMS117=CO117,NC117 LOCATION117=CO117

ATOMS118=CO118,NC118 LOCATION118=CO118

383 ATOMS119=CO119,NC119 LOCATION119=CO119

ATOMS120=CO120,NC120 LOCATION120=CO120

ATOMS121=CO121,NC121 LOCATION121=CO121

ATOMS122=CO122,NC122 LOCATION122=CO122

ATOMS123=CO123,NC123 LOCATION123=CO123

388 ATOMS124=CO124,NC124 LOCATION124=CO124

ATOMS125=CO125,NC125 LOCATION125=CO125

ATOMS126=CO126,NC126 LOCATION126=CO126

ATOMS127=CO127,NC127 LOCATION127=CO127

ATOMS128=CO128,NC128 LOCATION128=CO128

393 COMPONENTS

...

smac1: SMAC ...

398 SPECIES=m1

SWITCH={RATIONAL R_0=0.6}

SWITCH_COORD={EXP R_0=4}

KERNEL1={GAUSSIAN CENTER=0 SIGMA=0.8}

KERNEL2={GAUSSIAN CENTER=pi SIGMA=0.7}

403 ...

basis functions and the target distribution

bf1: BF_LEGENDRE ORDER=20 MINIMUM=1 MAXIMUM=14

td1: TD_WELLTEMPERED BIASFACTOR=2

408

VES_LINEAR_EXPANSION ...

LABEL=ves1

ARG=smac1

BASIS_FUNCTIONS=bf1

413 TARGET_DISTRIBUTION=td1

TEMP=450

GRID_BINS=100

... VES_LINEAR_EXPANSION

418 OPT_AVERAGED_SGD ...

BIAS=ves1

STRIDE=1000

LABEL=o1

STEPSIZE=0.01

423 FES_OUTPUT=200

BIAS_OUTPUT=200

COEFFS_FILE=coeffs.data

COEFFS_OUTPUT=50

TARGETDIST_STRIDE=100

428 ... OPT_AVERAGED_SGD

PRINT ARG=smac1 FILE=smac1.dat STRIDE=500

PRINT ARG=vol,ene,ves1.* FILE=colvar-ves.dat STRIDE=500

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	1 Introduction
	1.1 the Advent of Computer Simulations
	1.1.1 Monte Carlo
	1.1.2 Molecular Dynamics

	1.2 Statistical Thermodynamics
	1.2.1 Thermodynamic Ensembles and Partition Functions
	1.2.2 Observables and Ensemble Averages

	1.3 Force Fields
	1.3.1 Force Fieds for Biomolecules
	1.3.2 Smooth Square-Well Potential
	1.3.3 the Embedded-Atom Method Potential

	1.4 the Velocity-Verlet Integrator
	1.5 Periodic Boundary Conditions
	1.6 Thermostats and Barostats
	1.6.1 the Stochastic Rescaling Thermostat
	1.6.2 the Parrinello-Rahman Barostat

	2 Enhanced Sampling Methods
	2.1 Umbrella Sampling
	2.2 Metadynamics and Well-Tempered Metadynamics
	2.2.1 the Conventional Metadynamics
	2.2.2 Well-tempered Metadynamics

	2.3 Reweighting of Well-Tempered Metadynamics Simulations
	2.3.1 Residual Bias Reweighting
	2.3.2 Last Bias Reweighting

	2.4 Variationally Enhanced Sampling
	2.4.1 Variational Optimization Process
	2.4.2 Algorithmic Implementation of VES

	3 the ExtPlumed Extension and the Single-Chain Smooth Square-Well Polymer
	3.1 ESPResSo++ and ExtPlumed Extension
	3.2 the Single-Chain Smooth Square-Well Polymer
	3.2.1 the Square-Well Potential and the Smooth Square-Well Potential
	3.2.2 Simulations and Methods
	3.2.3 Methods of Analysis
	3.2.4 Results and Discussions
	3.2.5 Conclusions

	4 Variationally Enhanced Sampling with Permutationally Invariant Collective Variables
	4.1 a Short Review of VES
	4.2 the VES-PICV Method
	4.3 Simulations and Methods
	4.3.1 Seven Lennard-Jones Particles in Two-Dimensional Space
	4.3.2 Bulk Sodium

	4.4 Results
	4.4.1 Seven Lennard-Jones Particles
	4.4.2 Bulk Sodium

	4.5 Discussions

	5 Crystallization of Ice and Urea
	5.1 Ice
	5.1.1 Details of Simulations
	5.1.2 the Kernel CV
	5.1.3 Parameters in VES-PICV
	5.1.4 Results

	5.2 Urea
	5.2.1 Simulation details
	5.2.2 the SMAC Collective Variable
	5.2.3 Results

	5.3 Discussions

	6 Conclusions
	Appendix
	A Source Code of the ExtPlumed Extension
	B Source Code for the Smooth Square-Well Potential
	C Supporting Information of Single-Chain Smooth Square-Well Polymer
	D Supporting Information for Chapter 4
	D.1 Seven Lennard-Jones Particles
	D.2 Bulk Sodium

	E Input Files for PLUMED in Simulations of Ice and Urea
	E.1 Ice Ih
	E.2 Urea

